
CHAPTER

15
The Standard Template Library

IN THIS CHAPTER
• Introduction to the STL 726

• Algorithms 735

• Sequence Containers 743

• Iterators 751

• Specialized Iterators 763

• Associative Containers 771

• Storing User-Defined Objects 778

• Function Objects 786

16 3087 CH15 11/29/01 2:16 PM Page 725

Chapter 15
726

Most computer programs exist to process data. The data may represent a wide variety of real-
world information: personnel records, inventories, text documents, the results of scientific
experiments, and so on. Whatever it represents, data is stored in memory and manipulated in
similar ways. University computer science programs typically include a course called “Data
Structures and Algorithms.” The term data structures refers to the ways data is stored in mem-
ory, and algorithms refers to how it is manipulated.

C++ classes provide an excellent mechanism for creating a library of data structures. In the
past, compiler vendors and many third-party developers offered libraries of container classes to
handle the storage and processing of data. Now, however, Standard C++ includes its own built-
in container class library. It’s called the Standard Template Library (STL), and was developed
by Alexander Stepanov and Meng Lee of Hewlett Packard. The STL is part of the Standard
C++ class library, and can be used as a standard approach to storing and processing data.

This chapter describes the STL and how to use it. The STL is large and complex, so we won’t
by any means describe everything about it; that would require a large book. (Many books are
available on the STL; see Appendix H, “Bibliography.”) We will introduce the STL and give
examples of the more common algorithms and containers.

Introduction to the STL
The STL contains several kinds of entities. The three most important are containers, algo-
rithms, and iterators.

A container is a way that stored data is organized in memory. In earlier chapters we’ve
explored two kinds of containers: stacks and linked lists. Another container, the array, is so
common that it’s built into C++ (and most other computer languages). However, there are
many other kinds of containers, and the STL includes the most useful. The STL containers are
implemented by template classes, so they can be easily customized to hold different kinds of
data.

Algorithms in the STL are procedures that are applied to containers to process their data in var-
ious ways. For example, there are algorithms to sort, copy, search, and merge data. Algorithms
are represented by template functions. These functions are not member functions of the con-
tainer classes. Rather, they are standalone functions. Indeed, one of the striking characteristics
of the STL is that its algorithms are so general. You can use them not only on STL containers,
but on ordinary C++ arrays and on containers you create yourself. (Containers also include
member functions for more specific tasks.)

Iterators are a generalization of the concept of pointers: they point to elements in a container.
You can increment an iterator, as you can a pointer, so it points in turn to each element in a
container. Iterators are a key part of the STL because they connect algorithms with containers.

16 3087 CH15 11/29/01 2:16 PM Page 726

Think of them as a software version of cables (like the cables that connect stereo components
together or a computer to its peripherals).

Figure 15.1 shows these three main components of the STL. In this section we’ll discuss con-
tainers, algorithms, and iterators in slightly more detail. In subsequent sections we’ll explore
these concepts further with program examples.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
727

Algorithm

Algorithm

Algorithm

Iterator

Iterator

Objects

Container

Algorithms use iterators to act on objects in containers

Objects

Container

Iterator

Iterator

FIGURE 15.1
Containers, algorithms, and iterators.

Containers
A container is a way to store data, whether the data consists of built-in types such as int and
float, or of class objects. The STL makes seven basic kinds of containers available, as well as
three more that are derived from the basic kinds. In addition, you can create your own contain-
ers based on the basic kinds. You may wonder why we need so many kinds of containers. Why
not use C++ arrays in all data storage situations? The answer is efficiency. An array is awk-
ward or slow in many situations.

Containers in the STL fall into two main categories: sequence and associative. The sequence
containers are vector, list, and deque. The associative containers are set, multiset, map, and
multimap. In addition, several specialized containers are derived from the sequence containers.
These are stack, queue, and priority queue. We’ll look at these categories in turn.

16 3087 CH15 11/29/01 2:16 PM Page 727

Sequence Containers
A sequence container stores a set of elements in what you can visualize as a line, like houses
on a street. Each element is related to the other elements by its position along the line. Each
element (except at the ends) is preceded by one specific element and followed by another. An
ordinary C++ array is an example of a sequence container.

One problem with a C++ array is that you must specify its size at compile time; that is, in the
source code. Unfortunately, you usually don’t know, when you write the program, how much
data will be stored in the array. So you must specify an array large enough to hold what you
guess is the maximum amount of data. When the program runs, you will either waste space in
memory by not filling the array, or elicit an error message (or even blow up the program) by
running out of space. The STL provides the vector container to avoid these difficulties.

Here’s another problem with arrays. Say you’re storing employee records, and you’ve arranged
them in alphabetical order by the employee’s last name. If you now want to insert a new
employee whose name starts with L, you must move all the employees from M to Z to make
room. This can be very time-consuming. The STL provides the list container, which is based
on the idea of a linked list, to solve this problem. Recall from the LINKLIST example in Chapter
10, “Pointers,” that it’s easy to insert a new item in a linked list by rearranging several pointers.

The third sequence container is the deque, which can be thought of as a combination of a stack
and a queue. A stack, as you may recall from previous examples, works on a last-in-first-out
principle. Both input and output take place on the top of the stack. A queue, on the other hand,
uses a first-in-first-out arrangement: data goes in at the front and comes out at the back, like a
line of customers in a bank. A deque combines these approaches so you can insert or delete
data from either end. The word deque is derived from Double-Ended QUEue. It’s a versatile
mechanism that’s not only useful in its own right, but can be used as the basis for stacks and
queues, as you’ll see later.

Table 15.1 summarizes the characteristics of the STL sequence containers. It includes the ordi-
nary C++ array for comparison.

TABLE 15.1 Basic Sequence Containers

Container Characteristic Advantages and Disadvantages

ordinary C++ array Fixed size Quick random access (by index number)

Slow to insert or erase in the middle

Size cannot be changed at runtime

vector Relocating, Quick random access (by index
expandable array number)

Slow to insert or erase in the middle

Quick to insert or erase at end

Chapter 15
728

16 3087 CH15 11/29/01 2:16 PM Page 728

list Doubly linked list Quick to insert or delete at any location

Quick access to both ends

Slow random access

deque Like vector, but can Quick random access (using
be accessed at either index number)
end Slow to insert or erase in the middle

Quick insert or erase (push and pop) at
either the beginning or the end

Instantiating an STL container object is easy. First you must include an appropriate header file.
Then you use the template format with the kind of objects to be stored as the parameter.
Examples might be

vector<int> aVect; //create a vector of ints

or

list<airtime> departure_list; //create a list of airtimes

Notice that there’s no need to specify the size of STL containers. The containers themselves
take care of all memory allocation.

Associative Containers
An associative container is not sequential; instead it uses keys to access data. The keys, typi-
cally numbers or stings, are used automatically by the container to arrange the stored elements
in a specific order. It’s like an ordinary English dictionary, in which you access data by looking
up words arranged in alphabetical order. You start with a key value (say the word aardvark, to
use the dictionary example), and the container converts this key to the element’s location in
memory. If you know the key, you can access the associated value swiftly.

There are two kinds of associative containers in the STL: sets and maps. These both store data
in a structure called a tree, which offers fast searching, insertion, and deletion. Sets and maps
are thus very versatile general data structures suitable for a wide variety of applications.
However, it is inefficient to sort them and perform other operations that require random access.

Sets are simpler and more commonly used than maps. A set stores a number of items which
contain keys. The keys are the attributes used to order the items. For example, a set might store
objects of the person class, which are ordered alphabetically using their name attributes as
keys. In this situation, you can quickly locate a desired person object by searching for the

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
729

TABLE 15.1 Continued

Characteristic Advantages and Disadvantages

16 3087 CH15 11/29/01 2:16 PM Page 729

object with a specified name. If a set stores values of a basic type such as int, the key is the
entire item stored. Some writers refer to an entire object stored in a set as a key, but we’ll call
it the key object to emphasize that the attribute used to order it (the key) isn’t necessarily the
entire item.

A map stores pairs of objects: a key object and a value object. A map is often used as a con-
tainer that’s somewhat like an array, except that instead of accessing its elements with index
numbers, you access them with indices that can be of an arbitrary type. That is, the key object
serves as the index, and the value object is the value at that index.

The map and set containers allow only one key of a given value to be stored. This makes sense
in, say, a list of employees arranged by unique employee numbers. On the other hand, the
multimap and multiset containers allow multiple keys. In an English dictionary there might be
several entries for the word “set,” for example.

Table 15.2 summarizes the associative containers available in the STL.

TABLE 15.2 Basic Associative Containers

Container Characteristics

set Stores only the key objects
Only one key of each value allowed

multiset Stores only the key objects
Multiple key values allowed

map Associates key object with value object
Only one key of each value allowed

multimap Associates key object with value object
Multiple key values allowed

Creating associative containers is just like creating sequential ones:

set<int> intSet; //create a set of ints

or

multiset<employee> machinists; //create a multiset of employees

Member Functions
Algorithms are the heavy hitters of the STL, carrying out complex operations like sorting and
searching. However, containers also need member functions to perform simpler tasks that are
specific to a particular type of container.

Chapter 15
730

16 3087 CH15 11/29/01 2:16 PM Page 730

Table 15.3 shows some frequently-used member functions whose name and purpose (not the
actual implementation) are common to most container classes.

TABLE 15.3 Some Member Functions Common to All Containers

Name Purpose

size() Returns the number of items in the container

empty() Returns true if container is empty

max_size() Returns size of the largest possible container

begin() Returns an iterator to the start of the container, for iterating forwards
through the container

end() Returns an iterator to the past-the-end location in the container, used to
end forward iteration

rbegin() Returns a reverse iterator to the end of the container, for iterating back-
ward through the container

rend() Returns a reverse iterator to the beginning of the container; used to end
backward iteration

Many other member functions appear only in certain containers, or certain categories of con-
tainers. You’ll learn more about these as we go along. Appendix F, “STL Algorithms and
Member Functions,” includes a table showing the STL member functions and which ones exist
for which containers.

Container Adapters
It’s possible to create special-purpose containers from the normal containers mentioned previ-
ously using a construct called container adapters. These special-purpose containers have sim-
pler interfaces than the more general containers. The specialized containers implemented with
container adapters in the STL are stacks, queues, and priority queues. As we noted, a stack
restricts access to pushing and popping a data item on and off the top of the stack. In a queue,
you push items at one end and pop them off the other. In a priority queue, you push data in the
front in random order, but when you pop the data off the other end, you always pop the largest
item stored: the priority queue automatically sorts the data for you.

Stacks, queues, and priority queues can be created from different sequence containers,
although the deque is often used. Table 15.4 shows the abstract data types and the sequence
containers that can be used in their implementation.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
731

16 3087 CH15 11/29/01 2:16 PM Page 731

TABLE 15.4 Adapter-Based Containers

Container Implementation Characteristics

stack Can be implemented Insert (push) and remove (pop)
as vector, list, or at one end only
deque

queue Can be implemented Insert (push) at one end,
as list or deque remove (pop) at other

priority queue Can be implemented Insert (push) in random order
as vector or deque at one end, remove (pop) in

sorted order from other end

You use a template within a template to instantiate these classes. For example, here’s a stack
object that holds type int, instantiated from the deque class:

stack< deque<int> > aStak;

A detail to note about this format is that you must insert a space between the two closing angle
brackets. You can’t write

stack<deque<int>> astak; //syntax error

because the compiler will interpret the >> as an operator.

Algorithms
An algorithm is a function that does something to the items in a container (or containers). As
we noted, algorithms in the STL are not member functions or even friends of container classes,
as they are in earlier container libraries, but are standalone template functions. You can use
them with built-in C++ arrays, or with container classes you create yourself (provided the class
includes certain basic functions).

Table 15.5 shows a few representative algorithms. We’ll examine others as we go along.
Appendix F contains a table listing most of the STL algorithms.

TABLE 15.5 Some Typical STL Algorithms

Algorithm Purpose

find Returns first element equivalent to a specified value

count Counts the number of elements that have a specified value

equal Compares the contents of two containers and returns true if all corre-
sponding elements are equal

Chapter 15
732

16 3087 CH15 11/29/01 2:16 PM Page 732

search Looks for a sequence of values in one container that corresponds with
the same sequence in another container

copy Copies a sequence of values from one container to another (or to a
different location in the same container)

swap Exchanges a value in one location with a value in another

iter_swap Exchanges a sequence of values in one location with a sequence of
values in another location

fill Copies a value into a sequence of locations

sort Sorts the values in a container according to a specified ordering

merge Combines two sorted ranges of elements to make a larger sorted range

accumulate Returns the sum of the elements in a given range

for_each Executes a specified function for each element in the container

Suppose you create an array of type int, with data in it:

int arr[8] = {42, 31, 7, 80, 2, 26, 19, 75};

You can then use the STL sort() algorithm to sort this array by saying

sort(arr, arr+8);

where arr is the address of the beginning of the array, and arr+8 is the past-the-end address
(one item past the end of the array).

Iterators
Iterators are pointer-like entities that are used to access individual data items (which are usu-
ally called elements), in a container. Often they are used to move sequentially from element to
element, a process called iterating through the container. You can increment iterators with the
++ operator so they point to the next element, and dereference them with the * operator to
obtain the value of the element they point to. In the STL an iterator is represented by an object
of an iterator class.

Different classes of iterators must be used with different types of container. There are three
major classes of iterators: forward, bidirectional, and random access. A forward iterator can
only move forward through the container, one item at a time. Its ++ operator accomplishes this.
It can’t move backward and it can’t be set to an arbitrary location in the middle of the con-
tainer. A bidirectional iterator can move backward as well as forward, so both its ++ and --

operators are defined. A random access iterator, in addition to moving backward and forward,
can jump to an arbitrary location. You can tell it to access location 27, for example.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
733

TABLE 15.5 Continued

Algorithm Purpose

16 3087 CH15 11/29/01 2:16 PM Page 733

There are also two specialized kinds of iterators. An input iterator can “point to” an input
device (cin or a file) to read sequential data items into a container, and an output iterator can
“point to” an output device (cout or a file) and write elements from a container to the device.

While the values of forward, bi-directional, and random access iterators can be stored (so they
can be used later), the values of input and output iterators cannot be. This makes sense: the
first three iterators point to memory locations, while input and output iterators point to I/O
devices for which stored “pointer” values have no meaning. Table 15.6 shows the characteris-
tics of these different kinds of iterators.

TABLE 15.6 Iterator Characteristics

Iterator Can
Iterator Type Read/Write Be Saved Direction Access

Random access Read and write Yes Forward and back Random

Bidirectional Read and write Yes Forward and back Linear

Forward Read and write Yes Forward only Linear

Output Write only No Forward only Linear

Input Read only No Forward only Linear

Potential Problems with the STL
The sophistication of the STL’s template classes places a strain on compilers, and not all of
them respond well. Let’s look at some potential problems.

First, it’s sometimes hard to find errors because the compiler reports them as being deep in a
header file when they’re really in the class user’s code. You may need to resort to brute force
methods such as commenting out one line of your code at a time to find the culprit.

Precompilation of header files, which speeds up compilation dramatically on compilers that
offer it, may cause problems with the STL. If things don’t seem to be working, try turning off
precompiled headers.

The STL may generate spurious compiler warnings. “Conversion may lose significant digits” is
a favorite. These appear to be harmless, and can be ignored or turned off.

These minor complaints aside, the STL is a surprisingly robust and versatile system. Errors
tend to be caught at compile time rather than at runtime. The different algorithms and contain-
ers present a very consistent interface; what works with one container or algorithm will usually
work with another (assuming it’s used appropriately).

Chapter 15
734

16 3087 CH15 11/29/01 2:16 PM Page 734

This quick overview probably leaves you with more questions than answers. The balance of
this chapter should provide enough specific details of STL operation to make things clearer.

Algorithms
The STL algorithms perform operations on collections of data. These algorithms were
designed to work with STL containers, but one of the nice things about them is that you can
apply them to ordinary C++ arrays. This may save you considerable work when programming
arrays. It also offers an easy way to learn about the algorithms, unencumbered with containers.
In this section we’ll examine how some representative algorithms are used. (Remember that
the algorithms are listed in Appendix F.)

The find() Algorithm
The find() algorithm looks for the first element in a container that has a specified value. The
FIND example program shows how this looks when we’re trying to find a value in an array of
ints.

// find.cpp
// finds the first object with a specified value
#include <iostream>
#include <algorithm> //for find()
using namespace std;

int arr[] = { 11, 22, 33, 44, 55, 66, 77, 88 };

int main()
{
int* ptr;
ptr = find(arr, arr+8, 33); //find first 33
cout << “First object with value 33 found at offset “

<< (ptr-arr) << endl;
return 0;
}

The output from this program is

First object with value 33 found at offset 2.

As usual, the first element in the array is number 0, so the 33 is at offset 2, not 3.

Header Files
In this program we’ve included the header file ALGORITHM. Notice that, as with other header
files in the Standard C++ library, there is no file extension (like .H). This file contains the
declarations of the STL algorithms. Other header files are used for containers and for other
purposes. If you’re using an older version of the STL you may need to include a header file
with a somewhat different name, like ALGO.H.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
735

16 3087 CH15 11/29/01 2:16 PM Page 735

Ranges
The first two parameters to find() specify the range of elements to be examined. These values
are specified by iterators. In this example we use normal C++ pointer values, which are a spe-
cial case of iterators.

The first parameter is the iterator of (or in this case the pointer to) the first value to be exam-
ined. The second parameter is the iterator of the location one past the last element to be exam-
ined. Since there are 8 elements, this value is the first value plus 8. This is called a
past-the-end value; it points to the element just past the end of the range to be examined.

This syntax is reminiscent of the normal C++ idiom in a for loop:

for(int j=0; j<8; j++) //from 0 to 7
{
if(arr[j] == 33)

{
cout << “First object with value 33 found at offset “

<< j << endl;
break;
}

}

In the FIND example, the find() algorithm saves you the trouble of writing this for loop. In
more complicated situations, algorithms may save you from writing far more complicated
code.

The count() Algorithm
Let’s look at another algorithm, count(), which counts how many elements in a container have
a specified value and returns this number. The COUNT example shows how this looks:

// count.cpp
// counts the number of objects with a specified value
#include <iostream>
#include <algorithm> //for count()
using namespace std;

int arr[] = { 33, 22, 33, 44, 33, 55, 66, 77 };

int main()
{
int n = count(arr, arr+8, 33); //count number of 33’s
cout << “There are “ << n << “ 33’s in arr.” << endl;
return 0;
}

The output is

There are 3 33’s in arr.

Chapter 15
736

16 3087 CH15 11/29/01 2:16 PM Page 736

The sort() Algorithm
You can guess what the sort() algorithm does. Here’s an example, called SORT, of this algo-
rithm applied to an array:

// sort.cpp
// sorts an array of integers
#include <iostream>
#include <algorithm>
using namespace std;

//array of numbers
int arr[] = {45, 2, 22, -17, 0, -30, 25, 55};

int main()
{
sort(arr, arr+8); //sort the numbers

for(int j=0; j<8; j++) //display sorted array
cout << arr[j] << ‘ ‘;

cout << endl;
return 0;
}

The output from the program is

-30, -17, 0, 2, 22, 25, 45, 55

We’ll look at some variations of this algorithm later.

The search() Algorithm
Some algorithms operate on two containers at once. For instance, while the find() algorithm
looks for a specified value in a single container, the search() algorithm looks for a sequence
of values, specified by one container, within another container. The SEARCH example shows
how this looks.

// search.cpp
// searches one container for a sequence in another container
#include <iostream>
#include <algorithm>
using namespace std;

int source[] = { 11, 44, 33, 11, 22, 33, 11, 22, 44 };
int pattern[] = { 11, 22, 33 };

int main()
{
int* ptr;
ptr = search(source, source+9, pattern, pattern+3);

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
737

16 3087 CH15 11/29/01 2:16 PM Page 737

if(ptr == source+9) //if past-the-end
cout << “No match found\n”;

else
cout << “Match at “ << (ptr - source) << endl;

return 0;
}

The algorithm looks for the sequence 11, 22, 33, specified by the array pattern, within the
array source. As you can see by inspection, this sequence is found in source starting at the
fourth element (element 3). The output is

Match at 3

If the iterator value ptr ends up one past the end of the source, no match has been found.

The arguments to algorithms such as search() don’t need to be the same type of container.
The source could be in an STL vector, and the pattern in an array, for example. This kind of
generality is a very powerful feature of the STL.

The merge() Algorithm
Here’s an algorithm that works with three containers, merging the elements from two source
containers into a destination container. The MERGE example shows how it works.

// merge.cpp
// merges two containers into a third
#include <iostream>
#include <algorithm> //for merge()
using namespace std;

int src1[] = { 2, 3, 4, 6, 8 };
int src2[] = { 1, 3, 5 };
int dest[8];

int main()
{ //merge src1 and src2 into dest
merge(src1, src1+5, src2, src2+3, dest);
for(int j=0; j<8; j++) //display dest

cout << dest[j] << ‘ ‘;
cout << endl;
return 0;
}

}

The output, which displays the contents of the destination container, looks like this:

1 2 3 3 4 5 6 8

As you can see, merging preserves the ordering, interweaving the two sequences of source
elements into the destination container.

Chapter 15
738

16 3087 CH15 11/29/01 2:16 PM Page 738

Function Objects
Some algorithms can take something called a function object as an argument. A function object
looks, to the user, much like a template function. However, it’s actually an object of a template
class that has a single member function: the overloaded () operator. This sounds mysterious,
but it’s easy to use.

Suppose you want to sort an array of numbers into descending instead of ascending order. The
SORTEMP program shows how to do it:

// sortemp.cpp
// sorts array of doubles in backward order,
// uses greater<>() function object
#include <iostream>
#include <algorithm> //for sort()
#include <functional> //for greater<>
using namespace std;

//array of doubles
double fdata[] = { 19.2, 87.4, 33.6, 55.0, 11.5, 42.2 };

int main()
{ //sort the doubles
sort(fdata, fdata+6, greater<double>());

for(int j=0; j<6; j++) //display sorted doubles
cout << fdata[j] << ‘ ‘;

cout << endl;
return 0;

}

The sort() algorithm usually sorts in ascending order, but the use of the greater<>() func-
tion object, the third argument of sort(), reverses the sorting order. Here’s the output:

87.4 55 42.2 33.6 19.2 11.5

Besides comparisons, there are function objects for arithmetical and logical operations. We’ll
look at function objects more closely in the last section of this chapter.

User-Written Functions in Place of Function Objects
Function objects operate only on basic C++ types and on classes for which the appropriate
operators (+, <, ==, and so on) are defined. If you’re working with values for which this is not
the case, you can substitute a user-written function for a function object. For example, the
operator < is not defined for ordinary char* strings, but we can write a function to perform the
comparison, and use this function’s address (its name) in place of the function object. The
SORTCOM example shows how to sort an array of char* strings:

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
739

16 3087 CH15 11/29/01 2:16 PM Page 739

// sortcom.cpp
// sorts array of strings with user-written comparison function
#include <iostream>
#include <string> //for strcmp()
#include <algorithm>
using namespace std;

//array of strings
char* names[] = { “George”, “Penny”, “Estelle”,

“Don”, “Mike”, “Bob” };

bool alpha_comp(char*, char*); //declaration

int main()
{
sort(names, names+6, alpha_comp); //sort the strings

for(int j=0; j<6; j++) //display sorted strings
cout << names[j] << endl;

return 0;
}

bool alpha_comp(char* s1, char* s2) //returns true if s1<s2
{
return (strcmp(s1, s2)<0) ? true : false;
}

The third argument to the sort() algorithm is the address of the alpha_comp() function,
which compares two char* strings and returns true or false, depending on whether the first is
lexicographically (that is, alphabetically) less than the second. It uses the C library function
strcmp(), which returns a value less than 0 if its first argument is less than its second. The out-
put from this program is what you would expect:

Bob
Don
Estelle
George
Mike
Penny

Actually you don’t need to write your own function objects to handle text. If you use the
string class from the standard library, you can use built-in function objects such as less<>()
and greater<>().

Adding _if to Algorithms
Some algorithms have versions that end in _if. These algorithms take an extra parameter
called a predicate, which is a function object or a function. For example, the find() algorithm

Chapter 15
740

16 3087 CH15 11/29/01 2:16 PM Page 740

finds all elements equal to a specified value. We can also create a function that works with the
find_if() algorithm to find elements with any arbitrary characteristic.

Our example uses string objects. The find_if() algorithm is supplied with a user-written
isDon() function to find the first string in an array of string objects that has the value
“Don”. Here’s the listing for FIND_IF:

// find_if.cpp
// searches array of strings for first name that matches “Don”
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
//--
bool isDon(string name) //returns true if name==”Don”

{
return name == “Don”;
}

//--
string names[] = { “George”, “Estelle”, “Don”, “Mike”, “Bob” };

int main()
{
string* ptr;
ptr = find_if(names, names+5, isDon);

if(ptr==names+5)
cout << “Don is not on the list.\n”;

else
cout << “Don is element “

<< (ptr-names)
<< “ on the list.\n”;

return 0;
}

Since “Don” is indeed one of the names in the array, the output from the program is

Don is element 2 on the list.

The address of the function isDon() is the third argument to find_if(), while the first and
second arguments are, as usual, the first and the past-the-end addresses of the array.

The find_if() algorithm applies the isDon() function to every element in the range. If
isDon() returns true for any element, then find_if() returns the value of that element’s
pointer (iterator). Otherwise, it returns a pointer to the past-the-end address of the array.

Various other algorithms, such as count(), replace(), and remove(), have _if versions.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
741

16 3087 CH15 11/29/01 2:16 PM Page 741

The for_each() Algorithm
The for_each() algorithm allows you to do something to every item in a container. You write
your own function to determine what that “something” is. Your function can’t change the ele-
ments in the container, but it can use or display their values.

Here’s an example in which for_each() is used to convert all the values of an array from
inches to centimeters and display them. We write a function called in_to_cm() that multiplies
a value by 2.54, and use this function’s address as the third argument to for_each(). Here’s
the listing for FOR_EACH:

// for_each.cpp
// uses for_each() to output inches array elements as centimeters
#include <iostream>
#include <algorithm>
using namespace std;

void in_to_cm(double); //declaration

int main()
{ //array of inches values
double inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };

//output as centimeters
for_each(inches, inches+5, in_to_cm);
cout << endl;
return 0;
}

void in_to_cm(double in) //convert and display as centimeters
{
cout << (in * 2.54) << ‘ ‘;
}

The output looks like this:

8.89 15.748 2.54 32.385 10.9982

The transform() Algorithm
The transform() algorithm does something to every item in a container, and places the result-
ing values in a different container (or the same one). Again, a user-written function determines
what will be done to each item. The return type of this function must be the same as that of the
destination container. Our example is similar to FOR_EACH, except that instead of displaying the
converted values, our in_to_cm() function puts the centimeter values into a different array,
centi[]. The main program then displays the contents of centi[]. Here’s the listing for
TRANSFO:

// transfo.cpp
// uses transform() to change array of inches values to cm

Chapter 15
742

16 3087 CH15 11/29/01 2:16 PM Page 742

#include <iostream>
#include <algorithm>
using namespace std;

int main()
{ //array of inches values
double inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
double centi[5];
double in_to_cm(double); //prototype

//transform into array centi[]
transform(inches, inches+5, centi, in_to_cm);

for(int j=0; j<5; j++) //display array centi[]
cout << centi[j] << ‘ ‘;

cout << endl;
return 0;
}

double in_to_cm(double in) //convert inches to centimeters
{
return (in * 2.54); //return result
}

The output is the same as that from the FOR_EACH program.

We’ve looked at just a few of the algorithms in the STL. There are many others, but what
we’ve shown here should give you an idea of the kinds of algorithms that are available, and
how to use them.

Sequence Containers
As we noted earlier, there are two major categories of containers in the STL: sequence contain-
ers and associative containers. In this section we’ll discuss the three sequence containers (vec-
tors, lists, and deques), focusing on how these containers work and on their member functions.
We haven’t learned about iterators yet, so there will be some operations that we can’t perform
on these containers. We’ll examine iterators in the next section.

Each program example in the following sections will introduce several member functions for
the container being described. Remember, however, that different kinds of containers use mem-
ber functions with the same names and characteristics, so what you learn about, say,
push_back() for vectors will also be relevant to lists and queues.

Vectors
You can think of vectors as smart arrays. They manage storage allocation for you, expanding
and contracting the size of the vector as you insert or erase data. You can use vectors much like
arrays, accessing elements with the [] operator. Such random access is very fast with vectors.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
743

16 3087 CH15 11/29/01 2:16 PM Page 743

It’s also fast to add (or push) a new data item onto the end (the back) of the vector. When this
happens, the vector’s size is automatically increased to hold the new item.

Member Functions push_back(), size(), and operator[]
Our first example, VECTOR, shows the most common vector operations.

// vector.cpp
// demonstrates push_back(), operator[], size()
#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> v; //create a vector of ints

v.push_back(10); //put values at end of array
v.push_back(11);
v.push_back(12);
v.push_back(13);

v[0] = 20; //replace with new values
v[3] = 23;

for(int j=0; j<v.size(); j++) //display vector contents
cout << v[j] << ‘ ‘; //20 11 12 23

cout << endl;
return 0;
}

We use the vector’s default (no-argument) constructor to create a vector v. As with all STL
containers, the template format is used to specify the type of variable the container will hold
(in this case type int). We don’t specify the container’s size, so it starts off at 0.

The push_back() member function inserts the value of its argument at the back of the vector.
(The back is where the element with the highest index number is.) The front of a vector (the
element with index 0), unlike that of a list or queue, cannot be used for inserting new elements.
Here we push the values 10, 11, 12, and 13, so that v[0] contains 10, v[1] contains 11, v[2]
contains 12, and v[3] contains 13.

Once a vector has some data in it, this data can be accessed—both read and written to—using
the overloaded [] operator, just as if it were in an array. We use this operator to change the
first element from 10 to 20, and the last element from 13 to 23. Here’s the output from VECTOR:

20 11 12 23

The size() member function returns the number of elements currently in the container, which
in VECTOR is 4. We use this value in the for loop to print out the values of the elements in the
container.

Chapter 15
744

16 3087 CH15 11/29/01 2:16 PM Page 744

Another member function, max_size() (which we don’t demonstrate here), returns the maxi-
mum size to which a container can be expanded. This number depends on the type of data
being stored in the container (the bigger the elements, the fewer of them you can store), the
type of container, and the operating system. For example, on our system max_size() returns
1,073,741,823 for a vector type int.

Member Functions swap(), empty(), back(), and pop_back()
The next example, VECTCON, shows some additional vector constructors and member functions.

// vectcon.cpp
// demonstrates constructors, swap(), empty(), back(), pop_back()
#include <iostream>
#include <vector>
using namespace std;

int main()
{ //an array of doubles
double arr[] = { 1.1, 2.2, 3.3, 4.4 };

vector<double> v1(arr, arr+4); //initialize vector to array
vector<double> v2(4); //empty vector of size 4

v1.swap(v2); //swap contents of v1 and v2

while(!v2.empty()) //until vector is empty,
{
cout << v2.back() << ‘ ‘; //display the last element
v2.pop_back(); //remove the last element
} //output: 4.4 3.3 2.2 1.1

cout << endl;
return 0;
}

We’ve used two new vector constructors in this program. The first initializes the vector v1 with
the values of a normal C++ array passed to it as an argument. The arguments to this construc-
tor are pointers to the start of the array and to the element one past the end. The second con-
structor sets v2 to an initial size of 4, but does not supply any initial values. Both vectors hold
type double.

The swap() member function exchanges all the data in one vector with all the data in another,
keeping the elements in the same order. In this program there is only garbage data in v2, so it’s
swapped with the data in v1. We display v2 to show that it now contains the data that was in
v1. The output is

4.4, 3.3, 2.2, 1.1

The back() member function returns the value of the last element in the vector. We display
this value with cout. The pop_back() member function removes the last element in the vector.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
745

16 3087 CH15 11/29/01 2:16 PM Page 745

Thus each time through the loop there is a different last element. (It’s a little surprising that
pop_back() does not simultaneously return the value of the last element and remove it from
the vector, as we’ve seen pop() do in previous examples with stacks, but it doesn’t, so back()
must be used as well.)

Some member functions, such as swap(), also exist as algorithms. When this is the case, the
member function version is usually provided because it’s more efficient for that particular con-
tainer than the algorithm version. Sometimes you can use the algorithm as well. For example,
you can use it to swap elements in two different kinds of containers.

Member Functions insert() and erase()
The insert() and erase() member functions insert or remove an element from an arbitrary
location in a container. These functions aren’t very efficient with vectors, since all the elements
above the insertion or erasure must be moved to make space for the new element or close up
the space where the erased item was. However, insertion and erasure may nevertheless be use-
ful if speed is not a factor. The next example, VECTINS, shows how these member functions are
used:

// vectins.cpp
// demonstrates insert(), erase()
#include <iostream>
#include <vector>
using namespace std;

int main()
{
int arr[] = { 100, 110, 120, 130 }; //an array of ints

vector<int> v(arr, arr+4); //initialize vector to array

cout << “\nBefore insertion: “;
for(int j=0; j<v.size(); j++) //display all elements

cout << v[j] << ‘ ‘;

v.insert(v.begin()+2, 115); //insert 115 at element 2

cout << “\nAfter insertion: “;
for(j=0; j<v.size(); j++) //display all elements

cout << v[j] << ‘ ‘;

v.erase(v.begin()+2); //erase element 2

cout << “\nAfter erasure: “;
for(j=0; j<v.size(); j++) //display all elements

cout << v[j] << ‘ ‘;

Chapter 15
746

16 3087 CH15 11/29/01 2:16 PM Page 746

cout << endl;
return 0;
}

The insert() member function (at least this version of it) takes two arguments: the place
where an element will be inserted in a container, and the value of the element. We add 2 to the
begin() member function to specify element 2 (the third element) in the vector. The elements
from the insertion point to the end of the container are moved upward to make room, and the
size of the container is increased by 1.

The erase() member function removes the element at the specified location. The elements
above the deletion point are moved downward, and the size of the container is decreased by 1.
Here’s the output from VECTINS:

Before insertion: 100 110 120 130
After insertion: 100 110 115 120 130
After erasure: 100 110 120 130

Lists
An STL list container is a doubly linked list, in which each element contains a pointer not only
to the next element but also to the preceding one. The container stores the address of both the
front (first) and the back (last) elements, which makes for fast access to both ends of the list.

Member Functions push_front(), front(), and pop_front
Our first example, LIST, shows how data can be pushed, read, and popped from both the front
and the back.

//list.cpp
//demonstrates push_front(), front(), pop_front()
#include <iostream>
#include <list>
using namespace std;

int main()
{
list<int> ilist;

ilist.push_back(30); //push items on back
ilist.push_back(40);
ilist.push_front(20); //push items on front
ilist.push_front(10);

int size = ilist.size(); //number of items

for(int j=0; j<size; j++)
{
cout << ilist.front() << ‘ ‘; //read item from front

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
747

16 3087 CH15 11/29/01 2:16 PM Page 747

ilist.pop_front(); //pop item off front
}

cout << endl;
return 0;
}

We push data on the back (the end) and front of the list in such a way that when we display
and remove the data from the front it’s in normal order:

10 20 30 40

The push_front(), pop_front(), and front() member functions are similar to push_back(),
pop_back(), and back(), which we’ve already seen at work with vectors.

Note that you can’t use random access for list elements, because such access is too slow. For
this reason the [] operator is not defined for lists. If it were, this operator would need to tra-
verse the list, counting elements as it went, until it reached the correct one, a time-consuming
operation. If you need random access, you should use a vector or a deque.

Lists are appropriate when you will make frequent insertions and deletions in the middle of the
list. This is not efficient for vectors and deques, because all the elements above the insertion or
deletion point must be moved. However, it’s quick for lists because only a few pointers need to
be changed to insert or delete a new item. (However, it may still be time-consuming to find the
correct insertion point.)

The insert() and erase() member functions are used for list insertion and deletion, but they
require the use of iterators, so we’ll postpone a discussion of these functions.

Member Functions reverse(), merge(), and unique()
Some member functions exist only for lists; no such member functions are defined for other
containers, although there are algorithms that do the same things. Our next example, LISTPLUS,
shows some of these functions. It begins by filling two list-of-int objects with the contents of
two arrays.

// listplus.cpp
// demonstrates reverse(), merge(), and unique()
#include <iostream>
#include <list>
using namespace std;

int main()
{
int j;
list<int> list1, list2;

int arr1[] = { 40, 30, 20, 10 };
int arr2[] = { 15, 20, 25, 30, 35 };

Chapter 15
748

16 3087 CH15 11/29/01 2:16 PM Page 748

for(j=0; j<4; j++)
list1.push_back(arr1[j]); //list1: 40, 30, 20, 10

for(j=0; j<5; j++)
list2.push_back(arr2[j]); //list2: 15, 20, 25, 30, 35

list1.reverse(); //reverse list1: 10 20 30 40
list1.merge(list2); //merge list2 into list1
list1.unique(); //remove duplicate 20 and 30

int size = list1.size();
while(!list1.empty())

{
cout << list1.front() << ‘ ‘; //read item from front
list1.pop_front(); //pop item off front
}

cout << endl;
return 0;
}

The first list is in backward order, so we return it to normal sorted order using the reverse()
member function. (It’s quick to reverse a list container because both ends are accessible.) This
is necessary because the second member function, merge(), operates on two lists and requires
both of them to be in sorted order. Following the reversal, the two lists are

10, 20, 30, 40
15, 20, 25, 30, 35

Now the merge() function merges list2 into list1, keeping everything sorted and expanding
list1 to hold the new items. The resulting content of list1 is

10, 15, 20, 20, 25, 30, 30, 35, 40

Finally we apply the unique() member function to list1. This function finds adjacent ele-
ments with the same value, and removes all but the first. The contents of list1 are then dis-
played. The output of LISTPLUS is

10, 15, 20, 25, 30, 35, 40

To display the contents of the list we use the front() and pop_front() member functions in a
for loop. Each element, from front to back, is displayed and then popped off the list. The
result is that the process of displaying the list destroys it. This may not always be what you
want, but for the moment it’s the only way we have learned to access successive list elements.
Iterators, described in the next section, will solve this problem.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
749

16 3087 CH15 11/29/01 2:16 PM Page 749

Deques
A deque is like a vector in some ways and like a linked list in others. Like a vector, it supports
random access using the [] operator. However, like a list, a deque can be accessed at the front
as well as the back. It’s a sort of double-ended vector, supporting push_front(), pop_front(),
and front().

Memory is allocated differently for vectors and queues. A vector always occupies a contiguous
region of memory. If a vector grows too large, it may need to be moved to a new location
where it will fit. A deque, on the other hand, can be stored in several non-contiguous areas; it
is segmented. A member function, capacity(), returns the largest number of elements a vector
can store without being moved, but capacity() isn’t defined for deques because they don’t
need to be moved.

// deque.cpp
// demonstrates push_back(), push_front(), front()
#include <iostream>
#include <deque>
using namespace std;

int main()
{
deque<int> deq;

deq.push_back(30); //push items on back
deq.push_back(40);
deq.push_back(50);
deq.push_front(20); //push items on front
deq.push_front(10);

deq[2] = 33; //change middle item

for(int j=0; j<deq.size(); j++)
cout << deq[j] << ‘ ‘; //display items

cout << endl;
return 0;
}

We’ve already seen examples of push_back(), push_front(), and operator []. They work
the same for deques as for other containers. The output of this program is

10 20 33 40 50

Figure 15.2 shows some important member functions for the three sequential containers.

Chapter 15
750

16 3087 CH15 11/29/01 2:16 PM Page 750

FIGURE 15.2
Sequence containers.

Iterators
Iterators may seem a bit mysterious, yet they are central to the operation of the STL. In this
section we’ll first discuss the twin roles played by iterators: as smart pointers and as a connec-
tion between algorithms and containers. Then we’ll show some examples of their use.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
751

45

VECTOR push_back()

intVect [3] = = 25

10 15 20 25 30 35 40

0 1 2 3 4 5 6 46

45

23

LIST
push_back()

push_front()

pop_front() pop_back()

pop_back()

insert()

10 15 20 25 30 35 40

166

5

10 15 20 25 30 35 40

0 1 2 3 4 5 6

intDeque [3] = = 25

pop_back()

45

DEQUE
push_back()push_front()

pop_back

46
6

5

16 3087 CH15 11/29/01 2:16 PM Page 751

Iterators as Smart Pointers
It’s often necessary to perform an operation on all the elements in the container (or perhaps a
range of elements). Displaying the value of each element in the container or adding its value to
a total are examples. In an ordinary C++ array, such operations are carried out using a pointer
(or the [] operator, which is the same underlying mechanism). For example, the following
code iterates through a float array, displaying the value of each element:

float* ptr = start_address;
for(int j=0; j<SIZE; j++)

cout << *ptr++;

We dereference the pointer ptr with the * operator to obtain the value of the item it points to,
and increment it with the ++ operator so it points to the next item.

Ordinary Pointers Underpowered
However, with more sophisticated containers, plain C++ pointers have disadvantages. For one
thing, if the items stored in the container are not placed contiguously in memory, handling the
pointer becomes much more complicated; we can’t simply increment it to point to the next
value. For example, in moving to the next item in a linked list we can’t assume the item is
adjacent to the previous one; we must follow the chain of pointers.

We may also want to store the address of some container element in a pointer variable so we
can access the element at some future time. What happens to this stored pointer value if we
insert or erase something from the middle of the container? It may not continue to be valid if
the container’s contents are rearranged. It would be nice if we didn’t need to worry about revis-
ing all our stored pointer values when insertions and deletions take place.

One solution to these kinds of problems is to create a class of “smart pointers.” An object of
such a class basically wraps its member functions around an ordinary pointer. The ++ and *

operators are overloaded so they know how to operate on the elements in their container, even
if the elements are not contiguous in memory or change their locations. Here’s how that might
look, in skeleton form:

class SmartPointer
{
private:

float* p; //an ordinary pointer
public:

float operator*()
{ }

float operator++()
{ }

};

Chapter 15
752

16 3087 CH15 11/29/01 2:16 PM Page 752

void main()
{
...
SmartPointer sptr = start_address;
for(int j=0; j<SIZE; j++)

cout << *sptr++;
}

Whose Responsibility?
Should the smart pointer class be embedded in a container, or should it be a separate class?
The approach chosen by the STL is to make smart pointers, called iterators, into a completely
separate class (actually a family of templetized classes). The class user creates iterators by
defining them to be objects of such classes.

Iterators as an Interface
Besides acting as smart pointers to items in containers, iterators serve another important pur-
pose in the STL. They determine which algorithms can be used with which containers. Why is
this necessary?

In some theoretical sense you should be able to apply every algorithm to every container. And,
in fact, many algorithms will work with all the STL containers. However, it turns out that some
algorithms are very inefficient (that is, slow) when used with some containers. The sort()
algorithm, for example, needs random access to the container it’s trying to sort; otherwise, it
would need to iterate through the container to find each element before moving it, a time-
consuming approach. Similarly, to be efficient, the reverse() algorithm needs to iterate back-
ward as well as forward through a container.

Iterators provide a surprisingly elegant way to match appropriate algorithms with containers.
As we noted, you can think of an iterator as a cable, like the cable used to connect a computer
and printer. One end of the cable plugs into a container, and the other plugs into an algorithm.
However, not all cables plug into all containers, and not all cables plug into all algorithms. If
you try to use an algorithm that’s too powerful for a given container type, you won’t be able to
find a cable (an iterator) to connect them. If you try it, you will receive a compiler error alert-
ing you to the problem.

How many kinds of iterators (cables) do you need to make this scheme work? As it turns out,
only five types are necessary. Figure 15.3 shows these five categories, arranged from bottom to
top in order of increasing sophistication (input and output are equally unsophisticated).

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
753

16 3087 CH15 11/29/01 2:16 PM Page 753

FIGURE 15.3
Iterator categories.

If an algorithm needs only to step forward through a container, reading (but not writing to) one
item after another, it can use an input iterator to connect itself to the container. Actually, input
iterators are typically used, not with containers, but when reading from files or cin.

If an algorithm steps through the container in a forward direction but writes to the container
instead of reading from it, it can use an output iterator. Output iterators are typically used when
writing to files or cout.

If an algorithm steps along forward and may either read from or write to a container, it must
use a forward iterator.

If an algorithm must be able to step both forward and back through a container, it must use a
bidirectional iterator.

Chapter 15
754

Random Access

Bidirectional

Forward

Input Output

16 3087 CH15 11/29/01 2:16 PM Page 754

Finally, if an algorithm must access any item in the container instantly, without stepping along
to it, it must use a random access iterator. Random access iterators are like arrays, in that you
can access any element. They are the only iterators that can be manipulated with arithmetic
operations, as in

iter2 = iter1 + 7;

Table 15.7 shows which operations each iterator supports.

TABLE 15.7 Capabilities of Different Iterator Categories

Step Step Random
Forward Read Write Back Access

Iterator Type ++ value=*i *i=value -- [n]

Random access iterator x x x x x

Bidirectional iterator x x x x

Forward iterator x x x

Output iterator x x

Input iterator x x

As you can see, all the iterators support the ++ operator for stepping forward through the con-
tainer. The input iterator can use the * operator on the right side of the equal sign (but not on
the left):

value = *iter;

The output iterator can use the * operator only on the right:

*iter = value;

The forward iterator handles both reading and writing, and the bidirectional iterator can be
decremented as well as incremented. The random access iterator can use the [] operator (as
well as simple arithmetic operators such as + and -) to access any element quickly.

An algorithm can always use an iterator with more capability than it needs. If it needs a for-
ward iterator, for example, it’s all right to plug it into a bidirectional iterator or a random
access iterator.

Matching Algorithms with Containers
We’ve used a cable as an analogy to an iterator, because an iterator connects an algorithm and
a container. Let’s focus on the two ends of this imaginary cable: the container end and the
algorithm end.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
755

16 3087 CH15 11/29/01 2:16 PM Page 755

Plugging the Cable into a Container
If you confine yourself to the basic STL containers, you will be using only two kinds of itera-
tors. As shown in Table 15.8, the vector and deque accept any kind of iterator, while the list,
set, multiset, map, and multimap accept anything except the random iterator.

TABLE 15.8 Iterator Types Accepted by Containers

Vector List Deque Set Multiset Map Multimap

Random Access x x

Bidirectional x x x x x x x

Forward x x x x x x x

Input x x x x x x x

Output x x x x x x x

How does the STL enforce the use of the correct iterator for a given container? When you
define an iterator you must specify what kind of container it will be used for. For example, if
you’ve defined a list holding elements of type int

list<int> iList; //list of ints

then to define an iterator to this list you say

list<int>::iterator iter; //iterator to list-of-ints

When you do this, the STL automatically makes this iterator a bidirectional iterator, because
that’s what a list requires. An iterator to a vector or a deque is automatically created as a
random-access iterator.

This automatic selection process is implemented by causing an iterator class for a specific con-
tainer to be derived (inherited) from a more general iterator class that’s appropriate to a spe-
cific container. Thus the iterators to vectors and deques are derived from the random_access_
iterator class, while iterators to lists are derived from the bidirectional_iterator class.

We now see how containers are matched to their end of our fanciful iterator cables. A cable
doesn’t actually plug into a container; it is (figuratively speaking) hardwired to it, like the cord
on a toaster. Vectors and deques are always wired to random-access cables, while lists (and all
the associative containers, which we’ll encounter later in this chapter) are always wired to
bidirectional cables.

Chapter 15
756

16 3087 CH15 11/29/01 2:16 PM Page 756

Plugging the Cable into the Algorithm
Now that we’ve seen how one end of an iterator cable is “wired” to the container, we’re ready
to look at the other end of the cable. How do iterators plug into algorithms? Every algorithm,
depending on what it will do to the elements in a container, requires a certain kind of iterator.
If the algorithm must access elements at arbitrary locations in the container, it requires a
random-access iterator. If it will merely step forward through the iterator, it can use the less
powerful forward iterator. Table 15.9 shows a sampling of algorithms and the iterators they
require. (A complete version of this table is shown in Appendix F.)

TABLE 15.9 Type of Iterator Required by Representative Algorithms

Bidirec- Random
Algorithm Input Output Forward tional Access

for_each x

find x

count x

copy x x

replace x

unique x

reverse x

sort x

nth_element x

merge x x

accumulate x

Again, although each algorithm requires an iterator with a certain level of capability, a more
powerful iterator will also work. The replace() algorithm requires a forward iterator, but it
will work with a bidirectional or a random access iterator as well.

Now, imagine that algorithms have connectors with pins sticking out, like the cable connectors
on your computer. This is shown in Figure 15.4. Those requiring random access iterators have
5 pins, those requiring bidirectional iterators have 4 pins, those requiring forward iterators have
3 pins, and so on.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
757

16 3087 CH15 11/29/01 2:16 PM Page 757

FIGURE 15.4
Iterators connecting containers and algorithms.

The algorithm end of an iterator (a cable) has a connector with a certain number of holes. You
can plug a 5-hole iterator into a 5-pin algorithm, and you can also plug it into an algorithm
with 4 or fewer pins. However, you can’t plug a 4-hole (bidirectional) iterator into a 5-pin
(random-access) algorithm. So vectors and deques, with random access iterators, can be
plugged into any algorithm, while lists and associative containers, with only a 4-hole bidirec-
tional iterator, can only be plugged into less powerful algorithms.

The Tables Tell the Story
From Tables 15.8 and 15.9 you can figure out whether an algorithm will work with a given
container. Table 15.9 shows that the sort() algorithm, for example, requires a random-access
iterator. Table 15.8 indicates that the only containers that can handle random-access iterators
are vectors and deques. There’s no use trying to apply the sort() algorithm to lists, sets, maps,
and so on.

Any algorithm that does not require a random-access iterator will work with any kind of STL
container, because all these containers use bidirectional iterators, which is only one grade
below random access. (If there were a singly-linked list in the STL it would use only a forward
iterator, so it could not be used with the reverse() algorithm.)

As you can see, comparatively few algorithms require random-access iterators. Therefore most
algorithms work with most containers.

Chapter 15
758

reverse()Vector

Containers Algorithms

OK

Random-access iterator

sort()
List

No
good

Bidirectional iterator

16 3087 CH15 11/29/01 2:16 PM Page 758

Overlapping Member Functions and Algorithms
Sometimes you must choose between using a member function or an algorithm with the same
name. The find() algorithm, for example, requires only an input iterator, so it can be used
with any container. However, sets and maps have their own find() member function (unlike
sequential containers). Which version of find() should you use? Generally, if a member-
function version exists, it’s because, for that container, the algorithm version is not as efficient
as it could be; so in these cases you should probably use the member-function version.

Iterators at Work
Using iterators is considerably simpler than talking about them. We’ve already seen several
examples of one of the more common uses, where iterator values are returned by a container’s
begin() and end() member functions. We’ve disguised the fact that these functions return iter-
ator values by treating them as if they were pointers. Now let’s see how actual iterators are
used with these and other functions.

Data Access
In containers that provide random access iterators (vector and queue) it’s easy to iterate
through the container using the [] operator. Containers such as lists, which don’t support ran-
dom access, require a different approach. In previous examples we’ve used a “destructive read-
out” to display the contents of a list by popping off the items one by one, as in the LIST and
LISTPLUS examples. A more practical approach is to define an iterator for the container. The
LISTOUT program shows how that might look:

// listout.cpp
// iterator and for loop for output
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

int main()
{
int arr[] = { 2, 4, 6, 8 };
list<int> theList;

for(int k=0; k<4; k++) //fill list with array elements
theList.push_back(arr[k]);

list<int>::iterator iter; //iterator to list-of-ints

for(iter = theList.begin(); iter != theList.end(); iter++)
cout << *iter << ‘ ‘; //display the list

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
759

16 3087 CH15 11/29/01 2:16 PM Page 759

cout << endl;
return 0;
}

The program simply displays the contents of the theList container. The output is

2 4 6 8

We define an iterator of type list<int> to match the container type. As with a pointer vari-
able, we must give an iterator a value before using it. In the for loop we initialize it to
iList.begin(), the start of the container. We can increment it with the ++ operator so that it
steps through the elements in a container, and we can dereference it with the * operator to
obtain the value of each element it points to. We can also compare it for equality using the !=
operator, so we can exit the loop when it reaches the end of the container at iList.end().

An equivalent approach, using a while loop instead of a for loop, might be

iter = iList.begin();
while(iter != iList.end())

cout << *iter++ << ‘ ‘;

The *iter++ syntax is the same as it would be for a pointer.

Data Insertion
We can use similar code to place data into existing elements in a container, as shown in
LISTFILL:

// listfill.cpp
// uses iterator to fill list with data
#include <iostream>
#include <list>
using namespace std;

int main()
{
list<int> iList(5); //empty list holds 5 ints
list<int>::iterator it; //iterator
int data = 0;

//fill list with data
for(it = iList.begin(); it != iList.end(); it++)

*it = data += 2;
//display list

for(it = iList.begin(); it != iList.end(); it++)
cout << *it << ‘ ‘;

cout << endl;
return 0;
}

Chapter 15
760

16 3087 CH15 11/29/01 2:16 PM Page 760

The first loop fills the container with the int values 2, 4, 6, 8, 10, showing that the overloaded
* operator works on the left side of the equal sign as well as the right. The second loop dis-
plays these values.

Algorithms and Iterators
Algorithms, as we’ve discussed, use iterators as arguments (and sometimes as return values).
The ITERFIND example shows the find() algorithm applied to a list. (We know we can use the
find() algorithm with lists, because it requires only an input iterator.)

// iterfind.cpp
// find() returns a list iterator
#include <iostream>
#include <algorithm>
#include <list>
using namespace std;

int main()
{
list<int> theList(5); //empty list holds 5 ints
list<int>::iterator iter; //iterator
int data = 0;

//fill list with data
for(iter = theList.begin(); iter != theList.end(); iter++)

*iter = data += 2; //2, 4, 6, 8, 10
//look for number 8

iter = find(theList.begin(), theList.end(), 8);
if(iter != theList.end())

cout << “\nFound 8.\n”;
else

cout << “\nDid not find 8.\n”;
return 0;
}

As an algorithm, find() takes three arguments. The first two are iterator values specifying the
range to be searched, and the third is the value to be found. Here we fill the container with the
same 2, 4, 6, 8, 10 values as in the last example. Then we use the find() algorithm to look for
the number 8. If find() returns iList.end(), we know it’s reached the end of the container
without finding a match. Otherwise, it must have located an item with the value 8. Here the
output is

Found 8.

Can we use the value of the iterator to tell where in the container the 8 is located? You might
think the offset of the matching item from the beginning of the container could be calculated
from (iter - iList.begin()). However, this is not a legal operation on the iterators used for
lists. A list iterator is only a bidirectional iterator, so you can’t perform arithmetic with it. You

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
761

16 3087 CH15 11/29/01 2:16 PM Page 761

can do arithmetic with random access iterators, such as those used with vectors and queues.
Thus if you were searching a vector v rather than a list iList, you could rewrite the last part of
ITERFIND like this:

iter = find(v.begin(), v.end(), 8);
if(iter != v.end())

cout << “\nFound 8 at location “ << (iter-v.begin());
else

cout << “\nDid not find 8.”;

The output would be

Found 8 at location 3

Here’s another example in which an algorithm uses iterators as arguments. This one uses the
copy() algorithm with a vector. The user specifies a range of locations to be copied from one
vector to another, and the program copies them. Iterators specify this range.

// itercopy.cpp
// uses iterators for copy() algorithm
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main()
{
int beginRange, endRange;
int arr[] = { 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 };
vector<int> v1(arr, arr+10); //initialized vector
vector<int> v2(10); //uninitialized vector

cout << “Enter range to be copied (example: 2 5): “;
cin >> beginRange >> endRange;

vector<int>::iterator iter1 = v1.begin() + beginRange;
vector<int>::iterator iter2 = v1.begin() + endRange;
vector<int>::iterator iter3;

//copy range from v1 to v2
iter3 = copy(iter1, iter2, v2.begin());

//(it3 -> last item copied)
iter1 = v2.begin(); //iterate through range
while(iter1 != iter3) //in v2, displaying values

cout << *iter1++ << ‘ ‘;
cout << endl;
return 0;
}

Chapter 15
762

16 3087 CH15 11/29/01 2:16 PM Page 762

Here’s some interaction with this program:

Enter range to be copied (example: 2 5): 3 6
17 19 21

We don’t display the entire contents of v2, only the range of items copied. Fortunately, copy()
returns an iterator that points to the last item (actually one past the last item) that was copied to
the destination container, v2 in this case. The program uses this value in the while loop to dis-
play only the items copied.

Specialized Iterators
In this section we’ll examine two specialized forms of iterators: iterator adapters, which can
change the behavior of iterators in interesting ways, and stream iterators, which allow input
and output streams to behave like iterators.

Iterator Adapters
The STL provides three variations on the normal iterator. These are the reverse iterator, the
insert iterator, and the raw storage iterator. The reverse iterator allows you to iterate backward
through a container. The insert iterator changes the behavior of various algorithms, such as
copy() and merge(), so they insert data into a container rather than overwriting existing data.
The raw storage iterator allows output iterators to store data in uninitialized memory, but it’s
used in specialized situations and we’ll ignore it here.

Reverse Iterators
Suppose you want to iterate backward through a container, from the end to the beginning. You
might think you could say something like

list<int>::iterator iter; //normal iterator
iter = iList.end(); //start at end
while(iter != iList.begin()) //go to beginning

cout << *iter-- << ‘ ‘; //decrement iterator

but unfortunately this doesn’t work. (For one thing, the range will be wrong (from n to 1,
instead of from n–1 to 0).

To iterate backward you can use a reverse iterator. The ITEREV program shows an example
where a reverse iterator is used to display the contents of a list in reverse order.

// iterev.cpp
// demonstrates reverse iterator
#include <iostream>
#include <list>
using namespace std;

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
763

16 3087 CH15 11/29/01 2:16 PM Page 763

int main()
{
int arr[] = { 2, 4, 6, 8, 10 }; //array of ints
list<int> theList;

for(int j=0; j<5; j++) //transfer array
theList.push_back(arr[j]); //to list

list<int>::reverse_iterator revit; //reverse iterator

revit = theList.rbegin(); //iterate backward
while(revit != theList.rend()) //through list,

cout << *revit++ << ‘ ‘; //displaying output
cout << endl;
return 0;
}

The output of this program is

10 8 6 4 2

You must use the member functions rbegin() and rend() when you use a reverse iterator.
(Don’t try to use them with a normal forward iterator.) Confusingly, you’re starting at the end
of the container, but the member function is called rbegin(). Also, you must increment the
iterator. Don’t try to decrement a reverse iterator; revit-- doesn’t do what you want. With a
reverse_iterator, always go from rbegin() to rend() using the increment operator.

Insert Iterators
Some algorithms, such as copy(), overwrite the existing contents (if any) of the destination
container. The COPYDEQ program, which copies from one deque to another, provides an
example:

// copydeq.cpp
//demonstrates normal copy with queues
#include <iostream>
#include <deque>
#include <algorithm>
using namespace std;

int main()
{
int arr1[] = { 1, 3, 5, 7, 9 };
int arr2[] = { 2, 4, 6, 8, 10 };
deque<int> d1;
deque<int> d2;

Chapter 15
764

16 3087 CH15 11/29/01 2:16 PM Page 764

for(int j=0; j<5; j++) //transfer arrays to deques
{
d1.push_back(arr1[j]);
d2.push_back(arr2[j]);
} //copy d1 to d2

copy(d1.begin(), d1.end(), d2.begin());

for(int k=0; k<d2.size(); k++) //display d2
cout << d2[k] << ‘ ‘;

cout << endl;
return 0;
}

The output of this program is

1 3 5 7 9

The contents of d2 have been written over by the contents of d1, so when we display d2 there’s
no trace of its former (even-numbered) contents. Usually this behavior is what you want.
Sometimes, however, you’d rather that copy() inserted new elements into a container along
with the old ones, instead of overwriting the old ones. You can cause this behavior by using an
insert iterator. There are three flavors of this iterator:

• back_inserter inserts new items at the end

• front_inserter inserts new items at the beginning

• inserter inserts new items at a specified location

The DINSITER program shows how to use a back inserter.

//dinsiter.cpp
//demonstrates insert iterators with queues
#include <iostream>
#include <deque>
#include <algorithm>
using namespace std;

int main()
{
int arr1[] = { 1, 3, 5, 7, 9 }; //initialize d1
int arr2[] = {2, 4, 6}; //initialize d2
deque<int> d1;
deque<int> d2;

for(int i=0; i<5; i++) //transfer arrays to deques
d1.push_back(arr1[i]);

for(int j=0; j<3; j++)
d2.push_back(arr2[j]);

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
765

16 3087 CH15 11/29/01 2:16 PM Page 765

//copy d1 to back of d2
copy(d1.begin(), d1.end(), back_inserter(d2));

cout << “\nd2: “; //display d2
for(int k=0; k<d2.size(); k++)

cout << d2[k] << ‘ ‘;
cout << endl;
return 0;
}

The back inserter uses the container’s push_back() member function to insert the new items
from source container d1 at the end of the target container d2, following the existing items.
Container d1 is unchanged. The output of the program, which displays the new contents of
d2, is

d2: 2 4 6 1 3 5 7 9

If we specified a front inserter instead

copy(d1.begin(), d1.end(), front_inserter(d2));

then the new items would be inserted into the front of the container. The underlying mecha-
nism of the front inserter is the container’s push_front() member function, which pushes the
items into the front of the container, effectively reversing their order. The output would be

9 7 5 3 1 2 4 6

You can also insert the new items starting at any arbitrary element by using the inserter version
of the insert iterator. For example, to insert the new items at the beginning of d2, we would say

copy(d1.begin(), d1.end(), inserter(d2, d2.begin());

The first argument to inserter is the container to be copied into, and the second is an iterator
pointing to the location where copying should begin. Because inserter uses the container’s
insert() member function, the order of the elements is not reversed. The output resulting
from this statement would be

1 3 5 7 9 2 4 6

By changing the second argument to inserter we could cause the new data to be inserted any-
where in d2.

Note that a front_inserter can’t be used with a vector, because vectors don’t have a
push_front() member function; they can only be accessed at the end.

Chapter 15
766

16 3087 CH15 11/29/01 2:16 PM Page 766

Stream Iterators
Stream iterators allow you to treat files and I/O devices (such as cin and cout) as if they were
iterators. This makes it easy to use files and I/O devices as arguments to algorithms. (This is
another demonstration of the versatility of using iterators to link algorithms and containers.)

The major purpose of the input and output iterator categories is to support these stream iterator
classes. Input and output iterators make it possible for appropriate algorithms to be used
directly on input and output streams.

Stream iterators are actually objects of classes that are templetized for different types of input
or output. There are two stream iterators: ostream_iterator and istream_iterator. Let’s
look at them in turn.

The ostream_iterator Class
An ostream_iterator object can be used as an argument to any algorithm that specifies an
output iterator. In the OUTITER example we’ll use it as an argument to copy():

//outiter.cpp
//demonstrates ostream_iterator
#include <iostream>
#include <algorithm>
#include <list>
using namespace std;

int main()
{
int arr[] = { 10, 20, 30, 40, 50 };
list<int> theList;

for(int j=0; j<5; j++) //transfer array to list
theList.push_back(arr[j]);

ostream_iterator<int> ositer(cout, “, “); //ostream iterator

cout << “\nContents of list: “;
copy(theList.begin(), theList.end(), ositer); //display list
cout << endl;
return 0;
}

We define an ostream iterator for reading type int values. The two arguments to this construc-
tor are the stream to which the int values will be written, and a string value that will be dis-
played following each value. The stream value is typically a filename or cout; here it’s cout.
When writing to cout, the delimiting string can consist of any characters you want; here we
use a comma and a space.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
767

16 3087 CH15 11/29/01 2:16 PM Page 767

The copy() algorithm copies the contents of the list to cout. The ostream iterator is used as the
third argument to copy(); it’s the destination.

The output of OUTITER is

Contents of list: 10, 20, 30, 40, 50,

Our next example, FOUTITER, shows how to use an ostream iterator to write to a file:

//foutiter.cpp
//demonstrates ostream_iterator with files
#include <fstream>
#include <algorithm>
#include <list>
using namespace std;

int main()
{
int arr[] = { 11, 21, 31, 41, 51 };
list<int> theList;

for(int j=0; j<5; j++) //transfer array
theList.push_back(arr[j]); // to list

ofstream outfile(“ITER.DAT”); //create file object

ostream_iterator<int> ositer(outfile, “ “); //iterator
//write list to file

copy(theList.begin(), theList.end(), ositer);
return 0;
}

You must define an ofstream file object and associate it with a file, here called ITER.DAT. This
object is the first argument to the ostream_iterator. When writing to a file, use a whitespace
character in the string argument, not characters like “--”. This makes it easier to read the data
back from the file. Here we use a space (“ ”) character.

There’s no displayable output from FOUTITER, but you can use a text editor (like the Notepad
utility in Windows) to examine the file ITER.DAT, which was created by the ITER program. It
should contain the data

11 21 31 41 51

The istream_iterator Class
An istream_iterator object can be used as an argument to any algorithm that specifies an
input iterator. Our example, INITER, shows such objects used as the first two arguments to
copy(). This program reads floating-point numbers entered into cin (the keyboard) by the
user, and stores them in a list.

Chapter 15
768

16 3087 CH15 11/29/01 2:16 PM Page 768

// initer.cpp
// demonstrates istream_iterator
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

int main()
{
list<float> fList(5); //uninitialized list

cout << “\nEnter 5 floating-point numbers: “;
//istream iterators

istream_iterator<float> cin_iter(cin); //cin
istream_iterator<float> end_of_stream; //eos

//copy from cin to fList
copy(cin_iter, end_of_stream, fList.begin());

cout << endl; //display fList
ostream_iterator<float> ositer(cout, “--”);
copy(fList.begin(), fList.end(), ositer);
cout << endl;
return 0;
}

Here’s some interaction with INITER

Enter 5 floating-point numbers: 1.1 2.2 3.3 4.4 5.5
1.1--2.2--3.3--4.4--5.5--

Notice that for copy(), because the data coming from cin is the source and not the destination,
we must specify both the beginning and the end of the range of data to be copied. The begin-
ning is an istream_iterator connected to cin, which we define as cin_iter using the one-
argument constructor. But what about the end of the range? The no-argument (default)
constructor to istream_iterator plays a special role here. It always creates an
istream_iterator object that represents the end of the stream.

How does the user generate this end-of-stream value when inputting data? By typing the
Ctrl+Z key combination, which transmits the end-of-file character normally used for streams.
Sometimes several presses of Ctrl+Z are necessary. Pressing Enter won’t end the file, although
it will delimit the numbers.

We use an ostream_iterator to display the contents of the list, although of course there are
many other ways to do this.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
769

16 3087 CH15 11/29/01 2:16 PM Page 769

You must perform any display output, such as the “Enter 5 floating-point numbers” prompt,
not only before using the istream iterator, but even before defining it. As soon as this iterator is
defined, it locks up the display, waiting for input.

Our next example, FINITER, uses a file instead of cin as input to the copy() algorithm.

// finiter.cpp
// demonstrates istream_iterator with files
#include <iostream>
#include <list>
#include <fstream>
#include <algorithm>
using namespace std;

int main()
{
list<int> iList; //empty list
ifstream infile(“ITER.DAT”); //create input file object

//(ITER.DAT must already exist)
//istream iterators

istream_iterator<int> file_iter(infile); //file
istream_iterator<int> end_of_stream; //eos

//copy from infile to iList
copy(file_iter, end_of_stream, back_inserter(iList));

cout << endl; //display iList
ostream_iterator<int> ositer(cout, “--”);
copy(iList.begin(), iList.end(), ositer);
cout << endl;
return 0;
}

The output from FINITER is

11--21--31--31--41--51--

We define an ifstream object to represent the ITER.DAT file, which must already exist and con-
tain data. (The FOUTITER program, if you ran it, will have generated this file.)

Instead of using cout, as in the istream iterator in the INITER example, we use the ifstream
object named infile. The end-of-stream object is the same.

We’ve made another change in this program: it uses a back_inserter to insert data into iList.
This makes it possible to define iList as an empty container instead of one with a specified
size. This often makes sense when reading input, since you may not know how many items
will be entered.

Chapter 15
770

16 3087 CH15 11/29/01 2:16 PM Page 770

Associative Containers
We’ve seen that the sequence containers (vector, list, and deque) store data items in a fixed lin-
ear sequence. Finding an item in such a container (unless its index number is known or it’s
located at an end of the container) will involve the slow process of stepping through the items
in the container one by one.

In an associative container the items are not arranged in sequence. Instead they are arranged in
a more complex way that makes it much faster to find a given item. This arrangement is typi-
cally a tree structure, although different approaches (such as hash tables) are possible. The
speed of searching is the main advantage of associative containers.

Searching is done using a key, which is usually a single value like a number or string. This
value is an attribute of the objects in the container, or it may be the entire object.

The two main categories of associative containers in the STL are sets and maps.

A set stores objects containing keys. A map stores pairs, where the first part of the pair is an
object containing a key and the second part is an object containing a value.

In both a set and a map, only one example of each key can be stored. It’s like a dictionary that
forbids more than one entry for each word. However, the STL has alternative versions of set
and map that relax this restriction. A multiset and a multimap are similar to a set and a map,
but can include multiple instances of the same key.

Associative containers share many member functions with other containers. However, some
algorithms, such as lower_bound() and equal_range(), exist only for associative containers.
Also, some member functions that do exist for other containers, such as the push and pop fam-
ily (push_back() and so on) have no versions for associative containers. It wouldn’t make
sense to use push and pop with associative containers, because elements must always be
inserted in their ordered locations, not at the beginning or end of the container.

Sets and Multisets
Sets are often used to hold objects of user-defined classes such as employees in a database.
(You’ll see examples of this later in this chapter.) However, sets can also hold simpler elements
such as strings. Figure 15.5 shows how this looks. The objects are arranged in order, and the
entire object is the key.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
771

16 3087 CH15 11/29/01 2:16 PM Page 771

FIGURE 15.5
A set of string objects.

Our first example, SET, shows a set that stores objects of class string.

// set.cpp
// set stores string objects
#pragma warning (disable:4786) //for set (Microsoft only)
#include <iostream>
#include <set>
#include <string>
using namespace std;

int main()
{ //array of string objects
string names[] = {“Juanita”, “Robert”,

“Mary”, “Amanda”, “Marie”};
//initialize set to array

set<string, less<string> > nameSet(names, names+5);
//iterator to set

set<string, less<string> >::iterator iter;

nameSet.insert(“Yvette”); //insert more names
nameSet.insert(“Larry”);

Chapter 15
772

Set

”puma“ ”cat“

”dog“

”ocelot“

”puma“

”reindeer“

Keys

16 3087 CH15 11/29/01 2:16 PM Page 772

nameSet.insert(“Robert”); //no effect; already in set
nameSet.insert(“Barry”);
nameSet.erase(“Mary”); //erase a name

//display size of set
cout << “\nSize=” << nameSet.size() << endl;
iter = nameSet.begin(); //display members of set
while(iter != nameSet.end())

cout << *iter++ << ‘\n’;

string searchName; //get name from user
cout << “\nEnter name to search for: “;
cin >> searchName;

//find matching name in set
iter = nameSet.find(searchName);
if(iter == nameSet.end())

cout << “The name “ << searchName << “ is NOT in the set.”;
else

cout << “The name “ << *iter << “ IS in the set.”;
cout << endl;
return 0;
}

The directive

#pragma warning (disable:4786)

may be necessary on the Microsoft compiler when you use the SET or MAP files. It disables
warning 4786 (“identifier was truncated to 255 characters in the debug information”), whose
appearance seems to be a bug. The pragma must preceed the #includes for all files, not just
for SET and MAP, which cause the problem. A pragma is a compiler-specific directive that fine-
tunes compiler operations.

To define a set we specify the type of objects to be stored (in this case class string) and also
the function object that will be used to order the members of the set. Here we use less<>()
applied to string objects.

As you can see, a set has an interface similar to other STL containers. We can initialize a set to
an array, and insert new members into a set with the insert() member function. To display
the set we can iterate through it.

To find a particular entry in the set we use the find() member function. (Sequential containers
use find() in its algorithm version.) Here’s some sample interaction with SET, where the user
enters “George” as the name to be searched for:

Size = 7
Amanda
Barry

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
773

16 3087 CH15 11/29/01 2:16 PM Page 773

Juanita
Larry
Marie
Robert
Yvette

Enter name to search for: George
The name George is NOT in the set.

Of course the speed advantage of searching an associative container isn’t apparent until you
have many more entries than in this example.

Let’s look at an important pair of member functions available only with associative containers.
Our example, SETRANGE, shows the use of lower_bound() and upper_bound():

// setrange.cpp
// tests ranges within a set
#pragma warning (disable:4786) //for set (Microsoft only)
#include <iostream>
#include <set>
#include <string>
using namespace std;

int main()
{ //set of string objects
set<string, less<string> > organic;

//iterator to set
set<string, less<string> >::iterator iter;

organic.insert(“Curine”); //insert organic compounds
organic.insert(“Xanthine”);
organic.insert(“Curarine”);
organic.insert(“Melamine”);
organic.insert(“Cyanimide”);
organic.insert(“Phenol”);
organic.insert(“Aphrodine”);
organic.insert(“Imidazole”);
organic.insert(“Cinchonine”);
organic.insert(“Palmitamide”);
organic.insert(“Cyanimide”);

iter = organic.begin(); //display set
while(iter != organic.end())

cout << *iter++ << ‘\n’;

string lower, upper; //display entries in range
cout << “\nEnter range (example C Czz): “;

Chapter 15
774

16 3087 CH15 11/29/01 2:16 PM Page 774

cin >> lower >> upper;
iter = organic.lower_bound(lower);
while(iter != organic.upper_bound(upper))

cout << *iter++ << ‘\n’;
return 0;
}

The program first displays an entire set of organic compounds. The user is then prompted to
type in a pair of key values, and the program displays those keys that lie within this range.
Here’s some sample interaction:

Aphrodine
Cinchonine
Curarine
Curine
Cyanimide
Imidazole
Melamine
Palmitamide
Phenol
Xanthine

Enter range (example C Czz): Aaa Curb
Aphrodine
Cinchonine
Curarine

The lower_bound() member function takes an argument that is a value of the same type as the
key. It returns an iterator to the first entry that is not less than this argument (where the mean-
ing of “less” is determined by the function object used in the set’s definition). The
upper_bound() function returns an iterator to the first entry that is greater than its argument.
Together, these functions allow you to access a specified range of values.

Maps and Multimaps
A map stores pairs. A pair consists of a key object and a value object. The key object contains
a key that will be searched for. The value object contains additional data. As in a set, the key
objects can be strings, numbers, or objects of more complex classes. The values are often
strings or numbers, but they can also be objects or even containers.

For example, the key could be a word, and the value could be a number representing how
many times that word appears in a document. Such a map constitutes a frequency table. Or the
key could be a word and the value could be a list of page numbers. This arrangement could
represent an index, like the one at the back of this book. Figure 15.6 shows a situation in
which the keys are words and the values are definitions, as in an ordinary dictionary.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
775

16 3087 CH15 11/29/01 2:16 PM Page 775

FIGURE 15.6
A map of word-phrase pairs.

One common way to use maps is as associative arrays. In an ordinary C++ array the array
index, which is used to access a particular element, is an integer. Thus in the expression
anArray[3], the 3 is the array index. An associative array works in a similar way except that
you can choose the data type of the array index. If you’ve defined the index to be a string, for
example, you can say anArray[“jane”].

An Associative Array
Let’s look at a simple example of a map used as an associative array. The keys will be the
names of states, and the values will be the populations of the states. Here’s the listing for
ASSO_ARR:

// asso_arr.cpp
// demonstrates map used as associative array
#pragma warning (disable:4786) //for map (Microsoft only)
#include <iostream>
#include <string>
#include <map>
using namespace std;

Chapter 15
776

Key-value pairs

“snail”

“cat” “A small, furry animal
that chases mice.”

“dog” “A large, hairy animal
that chases sticks.”

“snail” “A small, shelled animal
that eats gardens.”

“puma” “A large, furry animal
 that eats hikers.”

16 3087 CH15 11/29/01 2:16 PM Page 776

int main()
{
string name;
int pop;

string states[] = { “Wyoming”, “Colorado”, “Nevada”,
“Montana”, “Arizona”, “Idaho”};

int pops[] = { 470, 2890, 800, 787, 2718, 944 };

map<string, int, less<string> > mapStates; //map
map<string, int, less<string> >::iterator iter; //iterator

for(int j=0; j<6; j++)
{
name = states[j]; //get data from arrays
pop = pops[j];
mapStates[name] = pop; //put it in map
}

cout << “Enter state: “; //get state from user
cin >> name;
pop = mapStates[name]; //find population
cout << “Population: “ << pop << “,000\n”;

cout << endl; //display entire map
for(iter = mapStates.begin(); iter != mapStates.end(); iter++)

cout << (*iter).first << ‘ ‘ << (*iter).second << “,000\n”;
return 0;
}

When the program runs, the user is prompted to type the name of a state. The program then
looks in the map, using the state name as an index, and returns the population of the state.
Finally, it displays all the name-population pairs in the map. Here’s some sample output:

Enter state: Wyoming
Population: 470,000

Arizona 2718,000
Colorado 2890,000
Idaho 944,000
Montana 787,000
Nevada 800,000
Wyoming 470,000

Search speed is where sets and maps excel. Here the program quickly finds the appropriate
population when the user enters a state’s name. (This would be more meaningful if there were
millions of data items.) Iterating through the container, as is shown by the list of states and
populations, isn’t as fast as in a sequential container, but it’s still fairly efficient. Notice that the
states are ordered alphabetically, although the original data was not.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
777

16 3087 CH15 11/29/01 2:16 PM Page 777

The definition of a map takes three template arguments:

map<string, int, less<string> > maStates;

The first is the type of the key. In this case it’s string, representing the state name. The second
is the type of the value; in this case it’s int, which represents the population, in 1,000s. The
third argument specifies the ordering that will be used for the keys. We choose to have it
ordered alphabetically by the names of the states; that’s what less<string> does. We also
define an iterator to this map.

Our input data is in two separate arrays. (In a real program it would probably come from a
file.) To put this data into the map we read it into the variables name and pop, and execute the
statement

mapStates[name] = pop;

This is a particularly elegant construction, looking just like an insertion into an ordinary array.
However, the array index name is a string, not an integer.

When the user types in a state name, the program finds the appropriate population with the
statement

pop = mapStates[name];

Besides using the array-index syntax, we can also access the two parts of an entry in the map,
the key, and the value, using an iterator. The key is obtained from (*iter).first, and the
value from (*iter).second. Otherwise the iterator works as it does in other containers.

Storing User-Defined Objects
Until now our example programs have stored objects of basic types. However, the big payoff
with the STL is that you can use it to store and manipulate objects of classes that you write
yourself (or that someone else has written). In this section we’ll show how this is done.

A Set of person Objects
We’ll start with a person class that includes a person’s last name, first name, and telephone
number. We’ll create some members of this class and insert them in a set, thus creating a phone
book database. The user interacts with the program by entering a person’s name. The program
then searches the list and displays the data for that person, if it finds a match. We’ll use a
multiset so two or more person objects can have the same name. Here’s the listing for SETPERS:

// setpers.cpp
// uses a multiset to hold person objects
#pragma warning (disable:4786) //for set (Microsoft only)
#include <iostream>

Chapter 15
778

16 3087 CH15 11/29/01 2:16 PM Page 778

#include <set>
#include <string>
using namespace std;

class person
{
private:

string lastName;
string firstName;
long phoneNumber;

public: //default constructor
person() : lastName(“blank”),

firstName(“blank”), phoneNumber(0)
{ }

//3-arg constructor
person(string lana, string fina, long pho) :

lastName(lana), firstName(fina), phoneNumber(pho)
{ }

friend bool operator<(const person&, const person&);
friend bool operator==(const person&, const person&);

void display() const //display person’s data
{
cout << endl << lastName << “,\t” << firstName

<< “\t\tPhone: “ << phoneNumber;
}

};
//operator < for person class

bool operator<(const person& p1, const person& p2)
{
if(p1.lastName == p2.lastName)

return (p1.firstName < p2.firstName) ? true : false;
return (p1.lastName < p2.lastName) ? true : false;
}

//operator == for person class
bool operator==(const person& p1, const person& p2)

{
return (p1.lastName == p2.lastName &&

p1.firstName == p2.firstName) ? true : false;
}

//
int main()

{ //create person objects
person pers1(“Deauville”, “William”, 8435150);
person pers2(“McDonald”, “Stacey”, 3327563);
person pers3(“Bartoski”, “Peter”, 6946473);
person pers4(“KuangThu”, “Bruce”, 4157300);

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
779

16 3087 CH15 11/29/01 2:16 PM Page 779

person pers5(“Wellington”, “John”, 9207404);
person pers6(“McDonald”, “Amanda”, 8435150);
person pers7(“Fredericks”, “Roger”, 7049982);
person pers8(“McDonald”, “Stacey”, 7764987);

//multiset of persons
multiset< person, less<person> > persSet;

//iterator to a multiset of persons
multiset<person, less<person> >::iterator iter;

persSet.insert(pers1); //put persons in multiset
persSet.insert(pers2);
persSet.insert(pers3);
persSet.insert(pers4);
persSet.insert(pers5);
persSet.insert(pers6);
persSet.insert(pers7);
persSet.insert(pers8);

cout << “\nNumber of entries = “ << persSet.size();

iter = persSet.begin(); //display contents of multiset
while(iter != persSet.end())

(*iter++).display();
//get last and first name

string searchLastName, searchFirstName;
cout << “\n\nEnter last name of person to search for: “;
cin >> searchLastName;
cout << “Enter first name: “;
cin >> searchFirstName;

//create person with this name
person searchPerson(searchLastName, searchFirstName, 0);

//get count of such persons
int cntPersons = persSet.count(searchPerson);
cout << “Number of persons with this name = “ << cntPersons;

//display all matches
iter = persSet.lower_bound(searchPerson);
while(iter != persSet.upper_bound(searchPerson))

(*iter++).display();
cout << endl;
return 0;
} //end main()

Chapter 15
780

16 3087 CH15 11/29/01 2:16 PM Page 780

Necessary Member Functions
To work with STL containers, the person class needs a few common member functions. These
are a default (no-argument) constructor (which is actually not necessary in this example but is
usually essential), the overloaded < operator, and the overloaded == operator. These member
functions are used by the list class and by various algorithms. You may need other member
functions in other specific situations. (As in most classes, you should probably also provide
overloaded assignment and copy constructors and a destructor, but we’ll ignore these here to
avoid complicating the listing.)

The overloaded < and == operators should use const arguments. Generally it’s best to make
them friends, but you can use member functions as well.

Ordering
The overloaded < operator specifies the way the elements in the set will be ordered. In SETPERS

we define this operator to order the last name of the person, and, if the last names are the
same, to order the first names.

Here’s some interaction with SETPERS. The program first displays the entire list. (Of course this
would not be practical on a real database with a large number of elements.) Because they are
stored in a multiset, the elements are ordered automatically. Then, at the prompt, the user
enters the name “McDonald” followed by “Stacey” (last name first). There are two persons on
the list with this particular name, so they are both displayed.

Number of entries = 8
Bartoski, Peter phone: 6946473
Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Amanda phone: 8435150
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

Enter last name of person to search for: McDonald
Enter first name: Stacey
Number of persons with this name = 2
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987

Just Like Basic Types
As you can see, once a class has been defined, objects of that class are handled by the con-
tainer in the same way as variables of basic types.

We first use the size() member function to display the total number of entries. Then we iter-
ate through the list, displaying all the entries.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
781

16 3087 CH15 11/29/01 2:16 PM Page 781

Because we’re using a multiset, the lower_bound() and upper_bound() member functions are
available to display all elements that fall within a range. In the example output the lower and
upper bound are the same, so all persons with the same name are displayed. Notice that we
must create a “fictitious” person with the same name as the person (or persons) we want to
find. The lower_bound() and upper_bound() functions then match this person against those
on the list.

A List of person Objects
It’s very fast to search a set or multiset for a person with a given name, as in the SETPERS exam-
ple. If, however, we’re more concerned with being able to quickly insert or delete a person
object, we might decide to use a list instead. The LISTPERS example shows how this looks.

// listpers.cpp
// uses a list to hold person objects
#include <iostream>
#include <list>
#include <algorithm>
#include <string>
using namespace std;

class person
{
private:

string lastName;
string firstName;
long phoneNumber;

public:
person() : //no-arg constructor

lastName(“blank”), firstName(“blank”), phoneNumber(0L)
{ }

//3-arg constructor
person(string lana, string fina, long pho) :

lastName(lana), firstName(fina), phoneNumber(pho)
{ }

friend bool operator<(const person&, const person&);
friend bool operator==(const person&, const person&);
friend bool operator!=(const person&, const person&);
friend bool operator>(const person&, const person&);

void display() const //display all data
{
cout << endl << lastName << “,\t” << firstName

<< “\t\tPhone: “ << phoneNumber;
}

Chapter 15
782

16 3087 CH15 11/29/01 2:16 PM Page 782

long get_phone() const //return phone number
{ return phoneNumber; }

};
//overloaded == for person class

bool operator==(const person& p1, const person& p2)
{
return (p1.lastName == p2.lastName &&

p1.firstName == p2.firstName) ? true : false;
}

//overloaded < for person class
bool operator<(const person& p1, const person& p2)

{
if(p1.lastName == p2.lastName)

return (p1.firstName < p2.firstName) ? true : false;
return (p1.lastName < p2.lastName) ? true : false;
}

//overloaded != for person class
bool operator!=(const person& p1, const person& p2)

{ return !(p1==p2); }
//overloaded > for person class

bool operator>(const person& p1, const person& p2)
{ return !(p1<p2) && !(p1==p2); }

//
int main()

{
list<person> persList; //list of persons

//iterator to a list of persons
list<person>::iterator iter1;

//put persons in list
persList.push_back(person(“Deauville”, “William”, 8435150));
persList.push_back(person(“McDonald”, “Stacey”, 3327563));
persList.push_back(person(“Bartoski”, “Peter”, 6946473));
persList.push_back(person(“KuangThu”, “Bruce”, 4157300));
persList.push_back(person(“Wellington”, “John”, 9207404));
persList.push_back(person(“McDonald”, “Amanda”, 8435150));
persList.push_back(person(“Fredericks”, “Roger”, 7049982));
persList.push_back(person(“McDonald”, “Stacey”, 7764987));

cout << “\nNumber of entries = “ << persList.size();

iter1 = persList.begin(); //display contents of list
while(iter1 != persList.end())

(*iter1++).display();

//find person or persons with specified name (last and first)
string searchLastName, searchFirstName;

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
783

16 3087 CH15 11/29/01 2:16 PM Page 783

cout << “\n\nEnter last name of person to search for: “;
cin >> searchLastName;
cout << “Enter first name: “;
cin >> searchFirstName;

//make a person with that name
person searchPerson(searchLastName, searchFirstName, 0L);

//search for first match of names
iter1 = find(persList.begin(), persList.end(), searchPerson);
if(iter1 != persList.end()) //find additional matches

{
cout << “Person(s) with that name is(are)”;
do

{
(*iter1).display(); //display match
++iter1; //search again, one past match
iter1 = find(iter1, persList.end(), searchPerson);
} while(iter1 != persList.end());

}
else

cout << “There is no person with that name.”;

//find person or persons with specified phone number
cout << “\n\nEnter phone number (format 1234567): “;
long sNumber; //get search number
cin >> sNumber;

//iterate through list
bool found_one = false;
for(iter1=persList.begin(); iter1 != persList.end(); ++iter1)

{
if(sNumber == (*iter1).get_phone()) //compare numbers

{
if(!found_one)

{
cout << “Person(s) with that phone number is(are)”;
found_one = true;
}

(*iter1).display(); //display the match
}

} //end for
if(!found_one)

cout << “There is no person with that phone number”;
cout << endl;
return 0;
} //end main()

Chapter 15
784

16 3087 CH15 11/29/01 2:16 PM Page 784

Finding All Persons with a Specified Name
We can’t use the lower_bound()/upper_bound() member functions because we’re dealing
with a list, not a set or map. Instead we use the find() member function to find all the persons
with a given name. If this function reports a hit, we must apply it again, starting one person
past the original hit, to see whether there are other persons with the same name. This compli-
cates the programming; we must use a loop and two calls to find().

Finding All Persons with a Specified Phone Number
It’s harder to search for a person with a specified phone number than one with a specified
name, because the class member functions such as find() are intended to be used to find the
primary search characteristic. In this example we use the brute force approach to finding the
phone number, iterating through the list and making a “manual” comparison of the number
we’re looking for and each member of the list:

if(sNumber == (*iter1).getphone())
...

The program first displays all the entries, then asks the user for a name and finds the matching
person or persons. It then asks for a phone number and again finds any matching persons.
Here’s some interaction with LISTPERS:

Number of entries = 8
Deauville, William phone: 8435150
McDonald, Stacey phone: 3327563
Bartoski, Peter phone: 6946473
KuangThu, Bruce phone: 4157300
Wellington, John phone: 9207404
McDonald, Amanda phone: 8435150
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Enter last name of person to search for: Wellington
Enter first name: John
Person(s) with that name is(are)
Wellington, John phone: 9207404

Enter phone number (format 1234567): 8435150
Person(s) with that number is(are)
Deauville, William phone: 8435150
McDonald, Amanda phone: 8435150

Here the program has found one person with the specified name and two people with the spec-
ified phone number.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
785

16 3087 CH15 11/29/01 2:16 PM Page 785

When using lists to store class objects we must declare four comparison operators for that
class: ==, !=, <, and >. Depending on what algorithms you actually use, you may not need to
define (provide function bodies for) all these operators. In this example we only need to define
the == operator, although for completeness we define all four. If we used the sort() algorithm
on the list, we would need to define the < operator as well.

Function Objects
Function objects are used extensively in the STL. One important use for them is as arguments
to certain algorithms. They allow you to customize the operation of these algorithms. We men-
tioned function objects earlier in this chapter, and used one in the SORTEMP program. There we
showed an example of the predefined function object greater<>() used to sort data in reverse
order. In this section we’ll examine other predefined function objects, and also see how you
can write your own so that you have even greater control over what the STL algorithms do.

Recall that a function object is a function that has been wrapped in a class so that it looks like
an object. The class, however, has no data and only one member function, which is the over-
loaded () operator. The class is often templatized so it can work with different types.

Predefined Function Objects
The predefined STL function objects, located in the FUNCTIONAL header file, are shown in Table
15.10. There are function objects corresponding to all the major C++ operators. In the table,
the letter T indicates any class, either user-written or a basic type. The variables x and y repre-
sent objects of class T passed to the function object as arguments.

TABLE 15.10 Predefined Function Objects

Function Object Return Value

T = plus(T, T) x+y

T = minus(T, T) x-y

T = times(T, T) x*y

T = divide(T, T) x/y

T = modulus(T, T) x%y

T = negate(T) -x

bool = equal_to(T, T) x == y

bool = not_equal_to(T, T) x != y

bool = greater(T, T) x > y

bool = less(T, T) x < y

bool = greater_equal(T, T) x >= y

Chapter 15
786

16 3087 CH15 11/29/01 2:16 PM Page 786

bool = less_equal(T, T) x <= y

bool = logical_and(T, T) x && y

bool = logical_or(T, T) x || y

bool = logical_not(T) !x

There are function objects for arithmetic operations, comparisons, and logical operations. Let’s
look at an example where an arithmetic function object might come in handy. Our example
uses a class called airtime, which represents time values consisting of hours and minutes, but
no seconds. This data type is appropriate for flight arrival and departure times in airports. The
example shows how the plus<>() function object can be used to add all the airtime values in
a container. Here’s the listing for PLUSAIR:

//plusair.cpp
//uses accumulate() algorithm and plus() function object
#include <iostream>
#include <list>
#include <numeric> //for accumulate()
using namespace std;
//
class airtime

{
private:

int hours; //0 to 23
int minutes; //0 to 59

public:
//default constructor

airtime() : hours(0), minutes(0)
{ }

//2-arg constructor
airtime(int h, int m) : hours(h), minutes(m)

{ }
void display() const //output to screen

{ cout << hours << ‘:’ << minutes; }

void get() //input from user
{
char dummy;
cout << “\nEnter airtime (format 12:59): “;
cin >> hours >> dummy >> minutes;
}

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
787

TABLE 15.10 Continued

Function Object Return Value

16 3087 CH15 11/29/01 2:16 PM Page 787

//overloaded + operator
airtime operator + (const airtime right) const

{ //add members
int temph = hours + right.hours;
int tempm = minutes + right.minutes;
if(tempm >= 60) //check for carry

{ temph++; tempm -= 60; }
return airtime(temph, tempm); //return sum
}

//overloaded == operator
bool operator == (const airtime& at2) const

{ return (hours == at2.hours) &&
(minutes == at2.minutes); }

//overloaded < operator
bool operator < (const airtime& at2) const

{ return (hours < at2.hours) ||
(hours == at2.hours && minutes < at2.minutes); }

//overloaded != operator
bool operator != (const airtime& at2) const

{ return !(*this==at2); }
//overloaded > operator

bool operator > (const airtime& at2) const
{ return !(*this<at2) && !(*this==at2); }

}; //end class airtime
//
int main()

{
char answer;
airtime temp, sum;
list<airtime> airlist; //list of airtimes

do { //get airtimes from user
temp.get();
airlist.push_back(temp);
cout << “Enter another (y/n)? “;
cin >> answer;
} while (answer != ‘n’);

//sum all the airtimes
sum = accumulate(airlist.begin(), airlist.end(),

airtime(0, 0), plus<airtime>());
cout << “\nsum = “;
sum.display(); //display sum
cout << endl;
return 0;
}

Chapter 15
788

16 3087 CH15 11/29/01 2:16 PM Page 788

This program features the accumulate() algorithm. There are two versions of this function.
The three-argument version always sums (using the + operator) a range of values. In the four-
argument version shown here, any of the arithmetic function objects shown in Table 15.10 can
be used.

The four arguments to this version of accumulate() are the iterators of the first and last ele-
ments in the range, the initial value of the sum (often 0), and the operation to be applied to the
elements. In this example we add them using plus<>(), but we could subtract them, multiply
them, or perform other operations using different function objects. Here’s some interaction
with PLUSAIR:

Enter airtime (format 12:59) : 3:45
Enter another (y/n)? y

Enter airtime (format 12:59) : 5:10
Enter another (y/n)? y

Enter airtime (format 12:59) : 2:25
Enter another (y/n)? y

Enter airtime (format 12:59) : 0:55
Enter another (y/n)? n

sum = 12:15

The accumulate() algorithm is not only easier and clearer than iterating through the container
yourself to add the elements, it’s also (unless you put a lot of work into your code) more effi-
cient.

The plus<>() function object requires that the + operator be overloaded for the airtime class.
This operator should be a const function, since that’s what the plus<>() function object
expects.

The other arithmetic function objects work in a similar way. The logical function objects such
as logical_and<>() can be used on objects of classes for which these operations make sense
(for example, type bool variables).

Writing Your Own Function Objects
If one of the standard function objects doesn’t do what you want, you can write your own. Our
next example shows two situations where this might be desirable, one involving the sort()
algorithm and one involving for_each().

It’s easy to sort a group of elements based on the relationship specified in the class < operator.
However, what happens if you want to sort a container that contains pointers to objects, rather

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
789

16 3087 CH15 11/29/01 2:16 PM Page 789

than the objects themselves? Storing pointers is a good way to improve efficiency, especially
for large objects, because it avoids the copying process that takes place whenever an object is
placed in a container. However, if you try to sort the pointers, you’ll find that the objects are
arranged by pointer address, rather than by some attribute of the object.

To make the sort() algorithm work the way we want in a container of pointers, we must sup-
ply it with a function object that defines how we want the data ordered.

Our example program starts with a vector of pointers to person objects. These objects are
placed in the vector, then sorted in the usual way, which leads to the pointers, not the persons,
being sorted. This isn’t what we want, and in this case causes no change in the ordering at all,
because the items were inserted in order of increasing addresses. Next, the vector is sorted cor-
rectly, using the function object comparePersons(). This orders items using the contents of
pointers, rather than the pointers themselves. The result is that the person objects are sorted
alphabetically by name. Here’s the listing for SORTPTRS:

// sortptrs.cpp
// sorts person objects stored by pointer
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
using namespace std;

class person
{
private:

string lastName;
string firstName;
long phoneNumber;

public:
person() : //default constructor

lastName(“blank”), firstName(“blank”), phoneNumber(0L)
{ }

//3-arg constructor
person(string lana, string fina, long pho) :

lastName(lana), firstName(fina), phoneNumber(pho)
{ }

friend bool operator<(const person&, const person&);
friend bool operator==(const person&, const person&);

void display() const //display person’s data
{
cout << endl << lastName << “,\t” << firstName

<< “\t\tPhone: “ << phoneNumber;
}

Chapter 15
790

16 3087 CH15 11/29/01 2:16 PM Page 790

long get_phone() const //return phone number
{ return phoneNumber; }

}; //end class person
//--
//overloaded < for person class
bool operator<(const person& p1, const person& p2)

{
if(p1.lastName == p2.lastName)

return (p1.firstName < p2.firstName) ? true : false;
return (p1.lastName < p2.lastName) ? true : false;
}

//--
//overloaded == for person class
bool operator==(const person& p1, const person& p2)

{
return (p1.lastName == p2.lastName &&

p1.firstName == p2.firstName) ? true : false;
}

//--
//function object to compare persons using pointers
class comparePersons

{
public:
bool operator() (const person* ptrP1,

const person* ptrP2) const
{ return *ptrP1 < *ptrP2; }

};
//--
//function object to display a person, using a pointer
class displayPerson

{
public:
void operator() (const person* ptrP) const

{ ptrP->display(); }
};

//
int main()

{ //a vector of ptrs to persons
vector<person*> vectPtrsPers;

//make persons
person* ptrP1 = new person(“KuangThu”, “Bruce”, 4157300);
person* ptrP2 = new person(“Deauville”, “William”, 8435150);
person* ptrP3 = new person(“Wellington”, “John”, 9207404);
person* ptrP4 = new person(“Bartoski”, “Peter”, 6946473);
person* ptrP5 = new person(“Fredericks”, “Roger”, 7049982);
person* ptrP6 = new person(“McDonald”, “Stacey”, 7764987);

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
791

16 3087 CH15 11/29/01 2:16 PM Page 791

vectPtrsPers.push_back(ptrP1); //put persons in set
vectPtrsPers.push_back(ptrP2);
vectPtrsPers.push_back(ptrP3);
vectPtrsPers.push_back(ptrP4);
vectPtrsPers.push_back(ptrP5);
vectPtrsPers.push_back(ptrP6);

for_each(vectPtrsPers.begin(), //display vector
vectPtrsPers.end(), displayPerson());

//sort pointers
sort(vectPtrsPers.begin(), vectPtrsPers.end());
cout << “\n\nSorted pointers”;
for_each(vectPtrsPers.begin(), //display vector

vectPtrsPers.end(), displayPerson());

sort(vectPtrsPers.begin(), //sort persons
vectPtrsPers.end(), comparePersons());

cout << “\n\nSorted persons”;
for_each(vectPtrsPers.begin(), //display vector

vectPtrsPers.end(), displayPerson());
while(!vectPtrsPers.empty())

{
delete vectPtrsPers.back(); //delete person
vectPtrsPers.pop_back(); //pop pointer
}

cout << endl;
return 0;
} //end main()

Here’s the output of SORTPTRS:

KuangThu, Bruce phone: 4157300
Deauville, William phone: 8435150
Wellington, John phone: 9207404
Bartoski, Peter phone: 6946473
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Sorted pointers
KuangThu, Bruce phone: 4157300
Deauville, William phone: 8435150
Wellington, John phone: 9207404
Bartoski, Peter phone: 6946473
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Sorted persons
Bartoski, Peter phone: 6946473

Chapter 15
792

16 3087 CH15 11/29/01 2:16 PM Page 792

Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

First the original order is shown, then the ordering sorted incorrectly by pointer, and finally the
order sorted correctly by name.

The comparePersons() Function Object
If we use the two-argument version of the sort() algorithm

sort(vectPtrsPers.begin(), vectPtrsPers.end());

then only the pointers are sorted, by their addresses in memory. This is not usually what we
want. To sort the person objects by name, we use the three-argument version of sort(), with
the comparePersons() function object as the third argument:

sort(vectPtrsPers.begin(),
bectPtrsPers.end(), comparePersons());

The function object comparePersons() is defined like this in the SORTPTRS program:

//function object to compare persons using pointers
class comparePersons

{
public:
bool operator() (const person* ptrP1,

const person* ptrP2) const
{ return *ptrP1 < *ptrP2; }

};

The operator() takes two arguments that are pointers to persons and compares their contents,
rather than the pointers themselves.

The displayPerson() Function Object
We use a different approach to display the contents of a container than we have before. Instead
of iterating through the container, we use the for_each() function, with a function object as its
third argument.

for_each(vectPtrsPers.begin(),
bectPtrsPers.end(), displayPeson());

This causes the displayPerson() function object to be called once for each person in the vec-
tor. Here’s how displayPerson() looks:

//function object to display a person, using a pointer
class displayPerson

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
793

16 3087 CH15 11/29/01 2:16 PM Page 793

{
public:
void operator() (const person* ptrP) const

{ ptrP->display(); }
};

With this arrangement a single function call displays all the person objects in the vector.

Function Objects Used to Modify Container Behavior
In SORTPTRS we showed function objects used to modify the behavior of algorithms. Function
objects can also modify the behavior of containers. For example, if you want a set of pointers
to objects to sort itself automatically based on the objects instead of the pointers, you can use
an appropriate function object when you define the container. No sort() algorithm need be
used. We’ll examine this approach in an exercise.

Summary
This chapter has presented a quick and dirty introduction to the STL. However, we’ve touched
on the major topics, and you should have acquired enough information to begin using the STL
in a useful way. For a fuller understanding of the STL we recommend that readers avail them-
selves of a complete text on the topic.

You’ve learned that the STL consists of three main components: containers, algorithms, and
iterators. Containers are divided into two groups: sequential and associative. Sequential con-
tainers are the vector, list, and deque. Associative containers are the set and map, and the
closely-related multiset and multimap. Algorithms carry out operations on containers, such as
sorting, copying, and searching. Iterators act like pointers to container elements and provide
connections between algorithms and containers.

Not all algorithms are appropriate for all containers. Iterators are used to ensure that algorithms
and containers are appropriately matched. Iterators are defined for specific kinds of containers,
and used as arguments to algorithms. If the container’s iterators don’t match the algorithm, a
compiler error results.

Input and output iterators connect directly to I/O streams, thus allowing data to be piped
directly between I/O devices and containers. Specialized iterators allow backward iteration and
can also change the behavior of some algorithms so that they insert data rather than overwrit-
ing existing data.

Chapter 15
794

16 3087 CH15 11/29/01 2:16 PM Page 794

Algorithms are standalone functions that can work on many different containers. In addition,
each container has its own specific member functions. In some cases the same function is
available as both an algorithm and a member function.

STL containers and algorithms will work with objects of any class, provided certain member
functions, such as the < operator, are overloaded for that class.

The behavior of certain algorithms such as find_if() can be customized using function
objects. A function object is instantiated from a class containing only an () operator.

Questions
Answers to these questions can be found in Appendix G.

1. An STL container can be used to

a. hold objects of class employee.

b. store elements in a way that makes them quickly accessible.

c. compile C++ programs.

d. organize the way objects are stored in memory.

2. The STL sequence containers are v_______, l_______, and d________.

3. Two important STL associative containers are s_______ and ma_______.

4. An STL algorithm is

a. a standalone function that operates on containers.

b. a link between member functions and containers.

c. a friend function of appropriate container classes.

d. a member function of appropriate container classes.

5. True or false: One purpose of an iterator in the STL is to connect algorithms and
containers.

6. The find() algorithm

a. finds matching sequences of elements in two containers.

b. finds a container that matches a specified container.

c. takes iterators as its first two arguments.

d. takes container elements as its first two arguments.

7. True or false: Algorithms can be used only on STL containers.

8. A range is often supplied to an algorithm by two i_______ values.

9. What entity is often used to customize the behavior of an algorithm?

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
795

16 3087 CH15 11/29/01 2:16 PM Page 795

10. A vector is an appropriate container if you

a. want to insert lots of new elements at arbitrary locations in the vector.

b. want to insert new elements, but always at the front of the container.

c. are given an index number and you want to quickly access the corresponding element.

d. are given an element’s key value and you want to quickly access the corresponding
element.

11. True or false: The back() member function removes the element at the back of the con-
tainer.

12. If you define a vector v with the default constructor, and define another vector w with a
one-argument constructor to a size of 11, and insert 3 elements into each of these vectors
with push_back(), then the size() member function will return ______ for v and _____
for w.

13. The unique() algorithm removes all _________ element values from a container.

14. In a deque

a. data can be quickly inserted or deleted at any arbitrary location.

b. data can be inserted or deleted at any arbitrary location, but the process is relatively
slow.

c. data can be quickly inserted or deleted at either end.

d. data can be inserted or deleted at either end, but the process is relatively slow.

15. In iterator ________ a specific element in a container.

16. True or false: An iterator can always move forward or backward through a container.

17. You must use at least a ____________ iterator for a list.

18. If iter is an iterator to a container, write an expression that will have the value of the
object pointed to by iter, and will then cause iter to point to the next element.

19. The copy() algorithm returns an iterator to

a. the last element copied from.

b. the last element copied to.

c. the element one past the last element copied from.

d. the element one past the last element copied to.

20. To use a reverse_iterator, you should

a. begin by initializing it to end().

b. begin by initializing it to rend().

c. increment it to move backward through the container.

d. decrement it to move backward through the container.

Chapter 15
796

16 3087 CH15 11/29/01 2:16 PM Page 796

21. True or false: The back_inserter iterator always causes the new elements to be inserted
following the existing ones.

22. Stream iterators allow you to treat the display and keyboard devices, and files, as if they
were _____________.

23. What does the second argument to an ostream_iterator specify?

24. In an associative container

a. values are stored in sorted order.

b. keys are stored in sorted order.

c. sorting is always in alphabetical or numerical order.

d. you must use the sort() algorithm to keep the contents sorted.

25. When defining a set, you must specify how ______________.

26. True or false: In a set, the insert() member function inserts a key in sorted order.

27. A map stores __________ of objects (or values).

28. True or false: A map can have two or more elements with the same key value.

29. If you store pointers to objects, instead of objects, in a container

a. the objects won’t need to be copied to implement storage in the container.

b. only associative containers can be used.

c. you can’t sort the objects using object attributes as keys.

d. the containers will often require less memory.

30. If you want an associative container such as set to order itself automatically, you can
define the ordering in a function object and specify that function object in the container’s
___________.

Exercises
Answers to exercises can be found in Appendix G.

*1. Write a program that applies the sort() algorithm to an array of floating point values
entered by the user, and displays the result.

*2. Apply the sort() algorithm to an array of words entered by the user, and display the
result. Use push_back() to insert the words, and the [] operator and size() to display
them.

*3. Start with a list of int values. Use two normal (not reverse) iterators, one moving for-
ward through the list and one moving backward, in a while loop, to reverse the contents
of the list. You can use the swap() algorithm to save a few statements. (Make sure your
solution works for both even and odd numbers of items.) To see how the experts do it,
look at the reverse() function in your compiler’s ALGORITHM header file.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
797

16 3087 CH15 11/29/01 2:16 PM Page 797

*4. Start with the person class, and create a multiset to hold pointers to person objects.
Define the multiset with the comparePersons function object, so it will be sorted auto-
matically by names of persons. Define a half-dozen persons, put them in the multiset,
and display its contents. Several of the persons should have the same name, to verify that
the multiset stores multiple objects with the same key.

5. Fill an array with even numbers and a set with odd numbers. Use the merge() algorithm
to merge these containers into a vector. Display the vector contents to show that all went
well.

6. In Exercise 3, two ordinary (non-reverse) iterators were used to reverse the contents of a
container. Now use one forward and one reverse iterator to carry out the same task, this
time on a vector.

7. We showed the four-argument version of the accumulate() algorithm in the PLUSAIR

example. Rewrite this example using the three-argument version.

8. You can use the copy() algorithm to copy sequences within a container. However, you
must be careful when the destination sequence overlaps the source sequence. Write a
program that lets you copy any sequence to a different location within an array, using
copy(). Have the user enter values for first1, last1, and first2. Use the program to
verify that you can shift a sequence that overlaps its destination to the left, but not to the
right. (For example, you can shift several items from 10 to 9, but not from 10 to 11.)
This is because copy() starts with the leftmost element.

9. We listed the function objects corresponding to the C++ operators in Table 15.10, and, in
the PLUSAIR program earlier in this chapter, we showed the function object plus<>()
used with the accumulate() algorithm. It wasn’t necessary to provide arguments to the
function objects in that example, but sometimes it is. However, you can’t put the argu-
ment within the parentheses of the function object, as you might expect. Instead, you use
a function adapter called bind1st or bind2nd to bind the argument to the function. For
example, suppose you were looking for a particular string (call it searchName) in a con-
tainer of strings (called names). You can say

ptr = find_if(names.begin(), names.end(),
bind2nd(equal_to<string>(), searchName));

Here equal_to<>() and searchName are arguments to bind2nd(). This statement returns
an iterator to the first string in the container equal to searchName. Write a program that
incorporates this statement or a similar one to find a string in a container of strings. It
should display the position of searchName in the container.

10. You can use the copy_backward() algorithm to overcome the problem described in
Exercise 7 (that is, you can’t shift a sequence to the left if any of the source overlaps any
of the destination). Write a program that uses both copy() and copy_backward() to
enable shifting any sequence anywhere within a container, regardless of overlap.

Chapter 15
798

16 3087 CH15 11/29/01 2:16 PM Page 798

11. Write a program that copies a source file of integers to a destination file, using stream
iterators. The user should supply both source and destination filenames to the program.
You can use a while loop approach. Within the loop, read each integer value from the
input iterator and write it immediately to the output iterator, then increment both itera-
tors. The ITER.DAT file created by the FOUTITER program in this chapter makes a suitable
source file.

12. A frequency table lists words and the number of times each word appears in a text file.
Write a program that creates a frequency table for a file whose name is entered by the
user. You can use a map of string-int pairs. You may want to use the C library function
ispunct() (in header file CTYPE.H) to check for punctuation so you can strip it off the
end of a word, using the string member function substr(). Also, the tolower() function
may prove handy for uncapitalizing words.

The Standard Template Library

15

T
H

E
S

TA
N

D
A

R
D

T
EM

PLA
TE

L
IB

R
A

RY
799

16 3087 CH15 11/29/01 2:16 PM Page 799

16 3087 CH15 11/29/01 2:16 PM Page 800

